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Exercise 1: Multidimensional Frobenius method In this problem we will explore the Frobenius

method. Consider the following system of differential equations

∂f⃗

∂x
=

(
2−x
1−x − 1

1−x

−x x
1−x

)
︸ ︷︷ ︸

M

f⃗ . (1)

A solution of this is given by

f⃗ =
( log(1− x)

1− x
,

1

1− x
+ log(1− x)

)T
. (2)

You may use this solution step-by-step to verify your working though in a real-life example, you would

obviously not know it.

a) Construct the matrices M (j) for j = 0, j = 1, and j = 2. Write down the matrices M̄ and M̃

b) Find a vector c⃗ from the left-nullspace of M̃ such that c⃗M̃ = 0.

c) Make an ansatz for f1 = xr
∑

xiai and calculate c⃗ · (f1, ∂xf1, ∂2
xf1). Find the biggest r, a1, a2,

and a3.

d) Construct f⃗ by inverting M̃ .

SOLUTION: We begin by verifying that (2) is indeed a valid solution of (1).

a) Using the recursive definition

M (0) = 1 and M (j) =
∂M (j−1)

∂x
−M (j−1)M , (3)

we have

M (0) =

(
1 0

0 1

)
(4)

M (1) = M (5)

M (2) =

(
5−3x
(1−x)2

− 3
(1−x)2

1+x
1−x

1+x
(1−x)2

)
. (6)
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With this we can just read of

M̄ =

(
1 0

2−x
1−x

1
x−1

)
(7)

M̃ =

 1 0
2−x
1−x

1
x−1

5−3x
(1−x)2

− 3
(1−x)2

 . (8)

At this point we may verify that

∂j f⃗

∂xj
= M (j)f⃗ ,(

f1, ∂xf1, ∂
2
xf1

)
= M̃f⃗ .

(9)

b) It is easy to see that

c⃗ =


1

1−2x+x2

−3+3x
1−2x+x2

1

 (10)

is a valid and properly normalised solution. You may want to verify that c⃗ ·(f1, ∂xf1, ∂2
xf1) =

0.

c) Expanding and collecting terms we have with a0 = 1

xr

(
(r − 1)r

x2
+O(x−1)

)
= 0 . (11)

The valid solutions are r = 0 or r = 1. We now expand higher with r = 1

(−3 + 2a1) + (−2− 6a1 + 6a2)x+ (−1− 5a1 − 9a2 + 12a3)x
2 +O(x3) = 0 (12)

to see that a1 = 3/2, a2 = 11/6, and a3 = 25/12. We can also explitly verify that expanding

(2) gives these expansions coefficients up to an overall sign.

d) The inverse matrix is

M̃−1 =

(
1 0

2− x −1 + x

)
. (13)

And therefore f⃗ = M̃−1(f1, ∂xf1)
T

f2 = −1− x2

2
− 2x3

3
. (14)



Exercise 2: Two-mass sunset diagram in d = 2− 2ϵ

Consider the following integral

Iαβγ = =

∫
[dk1][dk2][

k21 −m2
1

]α[
k22 −m2

1

]β[
(k1 + k2 + p)2 −m2

2

]γ , (15)

with p2 = m2
2 ̸= m2

1 in d = 2− 2ϵ dimensions. We use the integrals

I⃗ =
(
m2

2

)4−d
ϵ2
(
z−4I220, z

−2I202, z
−4I211, z

−1I112

)T
(16)

and the variable z = m2/m1.

a) Show that the differential equation matrix is precanonical

∂z I⃗ =


4ϵ
z 0 0 0

0 2ϵ
z 0 0

1
z(1−z2)

− 1
z(1−z2)

z2+(6−4z2)ϵ
z(1−z2)

− 1+2ϵ
z2(1−z2)

− z2

1−z2
1

1−z2
− z2(1+2ϵ)

1−z2
z2+2ϵ
z(1−z2)

 I⃗ . (17)

The boundary conditions can be fixed at z = 1

I1 = I2 = 1 + 2ϵ+ (1 + 2ζ2)ϵ
2 +O(ϵ3) , (18a)

I3 = I4 =
3

8
ζ2 +

1

4
+
(
+

21

16
ζ3 −

9

4
log 2ζ2 +

9

8
ζ2 −

1

2

)
ϵ+

(
− 63

16
ζ4 + 9Li4(

1
2) +

9

2
log 22ζ2 +

3

8
log 24

+
63

16
ζ3 −

27

4
log 2ζ2 +

1

2
ζ2 + 1

)
ϵ2 +O(ϵ3) .

(18b)

We will now try to derive a series expression around z = 1.

b) Show (18). (for the adventurous)

c) Consider first the homogenous subsystem for I⃗ ′ = (I3, I4) with x = 1− z

∂xI⃗
′ =

(
1−x

(x−2)x − 1
(x−2)(x−1)2x

− (1−x)2

(x−2)x
1−x

(x−2)x

)
I⃗ ′ . (19)

Construct M̃ and M̄

M̄ =

 1 0
1−x

(x−2)x − 1
(x−2)(x−1)2x

2(x2−2x+2)
(x−2)2x2

2(3x2−6x+2)
(x−2)2(x−1)3x2

 (20)

d) Find a solution c⃗ and write down the second-order differential equation for I3. Make a Frobenius

ansatz. What values of r are allowed?

e) Build a series solution for r = 0.



f) Construct the first-order differential equation to find the other solution for

c⃗2 =

(
4

x

1− x

2− x
, 1

)
. (21)

g) Build a series solution for r = −2 and write down the full homogenous solution for the original

differential equation.

h) Now we can consider the inhomogeneity. Show that for the k-th order in ϵ, it becomes

I⃗(k) =
1

x(x− 2)

[(
1

1−x − 1
1−x

−(1− x)2 1

)
·
(
I
(k)
1 , I

(k)
2

)
+

(
4x2−8x−2

x−1 − 2
(x−1)2

−2(x− 1)2 − 2
x−1

)
·
(
I
(k−1)
3 , I

(k−1)
4

)]
.

(22)

i) Now construct a solution up to O(ϵ2). Evaluate the result at z = 0.5.

SOLUTION: A Mathematica calculation of this problem is given on the website.

a) It is trivial to derive a differential equation for eg. m2
2 using reduze. From there we write

T = (m2
2)

d−4ϵ−2diag
(m4

2

m4
1

,
m2

2

m2
1

,
m4

2

m4
1

,
m2

m1

)
(23)

and hence Az.

b) It is clear that I1 = I2 and I3 = I4 from symmetry for z = 1. I1 is just a tadpole and

trivially just

I1 = I2

∣∣∣
z=1

= (1 + ϵ)2Γ[1− ϵ]2Γ[1 + ϵ]2 . (24)

For I3 we calculate the graph polynomials

U = x1x2 + x3x2 + x1x3 , (25)

F = −(x1 + x2)U − (x1 + x2)x
2
3 . (26)

Therefore the integral is

I3 = (−1)2ϵΓ(1− ϵ)2Γ(2 + 2ϵ)

∫
dx⃗ x1

U1+3ϵ

F2+2ϵ
(27)

= Γ(1− ϵ)2Γ(2 + 2ϵ)

∫
dx⃗ x1U1+3ϵ(x1 + x2)

−2−2ϵ(U + x23)
−2−2ϵ . (28)

Using the Mellin-Barnes theorem to split U + x23

I3 = Γ(1− ϵ)2
∫ +i∞

−i∞
dσ

∫
dx⃗Γ(−σ)Γ(2 + σ + 2ϵ) x1x

2σ
3 (x1 + x2)

−2−2ϵU−1−σ+ϵ . (29)

We can now solve the x3 and x2 integrals

I3 = Γ(1− ϵ)2
∫ +i∞

−i∞
dσ

Γ(−σ)Γ(2σ + 1)Γ(−ϵ− σ)Γ(ϵ+ σ + 1)Γ(ϵ+ σ + 2)Γ(2ϵ+ σ + 2)

Γ(−ϵ+ σ + 1)Γ(2ϵ+ 2σ + 3)
.

(30)



This integral can be solved in terms of 3F2 functions by considering the residues at σ = n

and σ = n− ϵ. Alternatively, we can solve it numerically for σ = 1/3 + i x

I3 =+ 0.8668502750680849136771556874922594459571062129525494141508343360137528

+ 0.3628423366548035363008187167277704240129460044840854565583099812335021ϵ

+ 2.897979437584699485862761102760735004697735930030264157054679832034451ϵ2

+O(ϵ3) .

(31)

We have evaluated the integral to 70 digits which is required to perform the rational number

fit.

c) It is trivial to find the homogenous matrix M as given in (19). From there, constructing M̄

is just a matter of calculating deriviatives.

d) We find p = 2

c⃗ =

(
2

x− 2
− 2

x
,

2

x− 2
+

2

x− 1
+

2

x
, 1

)
. (32)

Making the ansatz and expanding to the first order, we find r(1 + r) = 0. We hence choose

r = 0.

e) It is easy to see that ai = 1 for all i and hence f1 = 1/(1− x) is a solution.

f) We have

(c2)j =

p−1−j∑
n=0

(
p− n

1 + j

)
cp−n+1

∂p−n−j−1f1
∂xp−n−j−1

=

(
6x2 − 12x+ 4

(1− x)x(x2 − 3x+ 2)
+

2

(1− x)2
,

1

1− x

)
,

(33)

which is equivalent to the given c⃗2.

g) The solution for c⃗2 is slightly more complicated but can still be written in closed form

f ′
1 =

1

x2
+

1

x
+

3

4
+

x

2
+

5x2

16
+

3x3

16
+

7x4

64
+

x5

16
+

9x6

256
+

5x7

256
+

11x8

1024
+

3x9

512
+O(x10)

=

∞∑
i=0

i+ 1

2i
xi−2 =

4

x2(x− 2)2

(34)

The integrated f ′
1 can also be found easily

f1 = f0

∫
dxf ′

1 = f0

∫
dx =

1

1− x

(
− 1

x
+ log x+

∞∑
i=1

2 + i

2i

xi

2i

)
= −1

x
+ log x− 1 + x

(
log x− 1

4

)
+ x2 log x+ x3

(
log(x) +

5

48

)
+ x4

(
log x+

29

192

)
+ ...

(35)



The solution matrix F can be found as

F =

(
1 + x+ x2 + x3 − 1

x + log(x)− 1 + x
(
log x− 1

4

)
+ x2 log x+ x3

(
log x+ 5

48

)
1 +O

(
x4
)

1
x + log(x)− 1 + x

4 − x3

48

)
+O(x4) .

(36)

h) There are two contributions to I

� the lower sector contributions from I1 and I2 that are governed by the slices of

(Ax)3..4,1..2. These can be read of from the ϵ0 part of (17) after substituting z → 1− x.

� the lower order contribution from I3 and I4 that are governed by the O(ϵ) part of

(Ax)3..4,3..4.

i) We calculate

G(k) = F ·

(∫
dxF−1 1

2

(
I⃗(k), I⃗(k)

)
+ diag(c

(k)
1 , c

(k)
2 )

)
(37)

order-by-order and then obtain I3 = G11 +G12 and I4 = G21 +G22. We can then take the

limit x → 0 to match the integration constants. Since we have a series expansion, this is

fairly trivial. For k = 0,

G(0) =

c
(0)
1 − c

(0)
2
x + c

(0)
2 (log x− 1)

c
(0)
1

c
(0)
2
x + c

(0)
2 (log x− 1)

+O(x) . (38)

Since the limit x → 0 is finite, c
(0)
2 = 0. Matching (18), we then find c

(0)
1 = 1

4 + π2

16 .

Pluggin in numbers we find

I⃗ =


1

1

1.3581

0.4669

+


−0.7725

0.6137

0.4189

0.3800

 ϵ+


2.5883

2.4781

3.3107

1.1768

 ϵ2 +


−1.1793

2.1104

1.9080

1.2225

 ϵ3 +O(ϵ4) (39)


