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FOR FUNDAMENTAL PHYSICS

Exercise 1: Multidimensional Frobenius method  In this problem we will explore the Frobenius
method. Consider the following system of differential equations
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A solution of this is given by
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You may use this solution step-by-step to verify your working though in a real-life example, you would
obviously not know it.

a) Construct the matrices M @) for j =0, j =1, and j = 2. Write down the matrices M and M
b) Find a vector & from the left-nullspace of M such that &M = 0.

¢) Make an ansatz for fi = 2" > 2%a; and calculate &- (f1, 0. f1,02f1). Find the biggest r, a1, as,
and as.

d) Construct f by inverting M.

SOLUTION: We begin by verifying that is indeed a valid solution of .

a) Using the recursive definition
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With this we can just read of
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At this point we may verify that
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(£1.0:0.020) = MT.

b) It is easy to see that
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is a valid and properly normalised solution. You may want to verify that ¢- (f1,0xf1,02f1) =
0.

¢) Expanding and collecting terms we have with ap = 1
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The valid solutions are r = 0 or r = 1. We now expand higher with r =1
(=34 2a1) + (=2 — 6a1 + 6a2)z + (=1 — bay — 9as + 12a3)z> + O(23) =0 (12)

to see that a; = 3/2, ag = 11/6, and a3 = 25/12. We can also explitly verify that expanding
gives these expansions coefficients up to an overall sign.

d) The inverse matrix is

And therefore f: M=Y(f1, 0uf1)T

fo=—-1-2 -2 (14)




Exercise 2: Two-mass sunset diagram in d = 2 — 2¢

Consider the following integral
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with p? = m3 # m? in d = 2 — 2¢ dimensions. We use the integrals
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I'=(m3)" "€ <2 Inoo, 2 “I202, 2™ “I211, 2 I112> (16)
and the variable z = mgo/m;.
a) Show that the differential equation matrix is precanonical
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The boundary conditions can be fixed at z = 1
L =T =142+ (1+2)+0(), (18a)
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We will now try to derive a series expression around z = 1.
b) Show (18). (for the adventurous)
¢) Consider first the homogenous subsystem for I’ = (I3, I;) with z = 1 — z
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d) Find a solution ¢ and write down the second-order differential equation for I3. Make a Frobenius
ansatz. What values of r are allowed?

e) Build a series solution for r = 0.



f) Construct the first-order differential equation to find the other solution for
41—z
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g) Build a series solution for » = —2 and write down the full homogenous solution for the original

differential equation.

h) Now we can consider the inhomogeneity. Show that for the k-th order in €, it becomes
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i) Now construct a solution up to O(e?). Evaluate the result at z = 0.5.

SOLUTION: A Mathematica calculation of this problem is given on the website.

a) It is trivial to derive a differential equation for eg. m3 using reduze. From there we write
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and hence A..

b) It is clear that I; = I and I3 = I from symmetry for z = 1. I is just a tadpole and
trivially just

h=h =01+ €)’T'[1 — €’I'[1 + ¢)%. (24)
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For I3 we calculate the graph polynomials

U =zx129 + 2372 + 173, (25)
F = —(x14 zo)U — (x1 + 29)23 . (26)
Therefore the integral is
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Using the Mellin-Barnes theorem to split U + 3
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We can now solve the x3 and xo integrals

do
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This integral can be solved in terms of 3F5 functions by considering the residues at o = n
and 0 = n — e. Alternatively, we can solve it numerically for 0 = 1/3 4+ iz

I3 = +0.8668502750680849136771556874922594459571062129525494141508343360137528
+ 0.3628423366548035363008187167277704240129460044840854565583099812335021 ¢
+ 2.897979437584699485862761102760735004697735930030264157054679832034451 ¢
+0O(e%).
(31)

We have evaluated the integral to 70 digits which is required to perform the rational number
fit.

¢) It is trivial to find the homogenous matrix M as given in (19). From there, constructing M
is just a matter of calculating deriviatives.

d) We find p =2
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Making the ansatz and expanding to the first order, we find (1 + r) = 0. We hence choose
r=0.

e) It is easy to see that a; = 1 for all ¢ and hence f; = 1/(1 — z) is a solution.

f) We have
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which is equivalent to the given é5.

g) The solution for ¢ is slightly more complicated but can still be written in closed form
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The integrated f] can also be found easily
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The solution matrix F' can be found as

ja 1+2+22+23 —%—i—log(x)—l—&—x(logx—i)+x2logx+x3(logx+f—8)
“ 140 L tlog(a) —1+ % — %5
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h) There are two contributions to Z

e the lower sector contributions from Iy and I» that are governed by the slices of
(Az)3.4,1.2. These can be read of from the €Y part of after substituting z — 1 — .

e the lower order contribution from I3 and I that are governed by the O(e) part of
(Az)3.4,3.4.

i) We calculate
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order-by-order and then obtain I3 = G11 + G12 and Iy = G21 4+ G22. We can then take the
limit £ — 0 to match the integration constants. Since we have a series expansion, this is

fairly trivial. For k = 0,
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Since the limit x — 0 is finite, céo) = 0. Matching , we then find cgo) = i +1
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Pluggin in numbers we find

1 —0.7725 2.5883 _1.1793

. 1 0.6137 9.4781 9.1104
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0.4669 0.3800 1.1768 1.2225




