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Exercise 1: top quark decay

Consider the following integral that appears in the two-loop calculation of the top decay

(p+ q)2 = s

q2 ≪ s, p2

p2

(1)

The dashed line corresponds to light b quark and the solid line to the heavy t quark.

a) Find the momentum regions that contribute to this process.

b) Show that the hard region does in fact equal the same calculation with massless b quarks, i.e.

m = 0.

c) The result for m = 0 can be found in the literature as
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Show by explicit calculation of the remaining regions that the complete integral has no 1/ϵ2 pole

but a log(m2/M2).

Exercise 2: Soft approximation

Consider the following diagram
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with the energy of the photon soft compared to s = Q2 and p21 = p22 = m2 ≪ s. This can be phrased

in a Lorentz invariant way by requiring that all invariants

σi3 = 2pi · p3 ∼ m ∼ λ . (4)

a) Use the method of regions in the parametric representation to find all six regions that contribute

to this integral.

b) Consider the region r⃗ (1) = (0,−1,−1, 1), i.e. P1 ∼ 1, P2 ∼ λ−1, P3 ∼ λ−1, P4 ∼ λ. Show that

this integral is not finite in dimensional regularisation.

Such behaviour is not uncommon and usually points to a broken symmetry eg. in SCET. It is usually

addressed by using analytic regularisation, i.e.∫
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We have introduced an additional regulator η that we will take to zero as soon as we have added all

regions. Crucially, η → 0 needs to be done before ϵ → 0.

c) Calculate the integral, up to O(λ0). Add all regions and set η → 0 and finally ϵ → 0.


