Exercise 1: Sunset diagram Consider the following integral

$$
\begin{equation*}
I\left(a_{1}, a_{2}, a_{3} ; \mathcal{N}\right)=\mathcal{N} \times \underbrace{\{\underbrace{a_{3}}_{a_{3}}\}}_{a_{2}}=\int\left[\mathrm{d} k_{1}\right]\left[\mathrm{d} k_{2}\right] \frac{\mathcal{N}_{1}}{\left[k_{1}^{2}\right]^{a_{1}}\left[k_{2}^{2}\right]^{a_{2}}\left[\left(k_{1}-k_{2}-p\right)^{2}-m^{2}\right]^{a_{3}}} \tag{1}
\end{equation*}
$$

with $p^{2}=m^{2} \neq 0$ and an arbitrary numerator \mathcal{N}.
a) Find a complete family. We know that it will need $\ell(1+\ell+2 \rho) / 2=5$ propagators.
b) Identify the sectors in which all integrals vanish.
c) Consider the IBP generated through $\partial_{k_{1}^{\mu}}\left(k_{1}^{\mu} I\right)$. Use it to show that

$$
\begin{equation*}
\int\left[\mathrm{d} k_{1}\right]\left[\mathrm{d} k_{2}\right] \frac{k_{2} \cdot p}{\left[k_{1}^{2}\right]\left[k_{2}^{2}\right]\left[\left(k_{1}-k_{2}-p\right)^{2}-m^{2}\right]^{2}}=\frac{3-d}{2} \int\left[\mathrm{~d} k_{1}\right]\left[\mathrm{d} k_{2}\right] \frac{1}{\left[k_{1}^{2}\right]\left[k_{2}^{2}\right]\left[\left(k_{1}-k_{2}-p\right)^{2}-m^{2}\right]} \tag{2}
\end{equation*}
$$

d) Now find all six seed identities as a function of a_{1}, \ldots, a_{5}.
e) Implement Laporta's algorithm to solve the system up to $r=4$ and $s=1$ for sector 7 and its subsectors.

Exercise 2: Sunset diagram using computer codes
Consider again the same integral (1) but now with $p^{2}=s \neq m^{2}$. Perform the reduction using reduze or kira for all integrals with $r \leq 4$ and $s \leq 1$.
a) Make a list of all 75 integrals you want to calculate using a computer program.
b) Perform the reduction of all integrals without specifying a basis of master integrals. How many master integrals do you find?
c) Consider the following possible choices of master integrals. Which ones do you prefer and why?

$$
\begin{equation*}
\vec{I}_{1}=\binom{I(1,1,1 ; 1)}{I(1,1,2 ; 1)}, \quad \vec{I}_{2}=\binom{I(1,1,1 ; 1)}{I\left(1,1,1 ; p \cdot k_{1}\right)}, \quad \vec{I}_{3}=\binom{I(1,2,1 ; 1)}{I(1,1,2 ; 1)} . \tag{3}
\end{equation*}
$$

