Exercise 1: Γ functions
Use our basic integral

$$
\begin{equation*}
\int_{0}^{\infty} \mathrm{d} x x^{\alpha}(a+b x)^{\beta}=\frac{\Gamma(1+\alpha) \Gamma(-1-\alpha-\beta)}{\Gamma(-\beta)} \frac{a^{1+\alpha+\beta}}{b^{1+\alpha}} \tag{1}
\end{equation*}
$$

to calculate
a) $I_{1}(\alpha, \beta, \gamma, \delta)=\int \mathrm{d} x_{1} \mathrm{~d} x_{2} \mathrm{~d} x_{3} \delta(\cdots) x_{1}^{\alpha} x_{2}^{\beta} x_{3}^{\gamma}\left(x_{2} x_{3}+x_{1} x_{2}+x_{1} x_{3}\right)^{\delta}$
b) $I_{2}(\alpha, \beta, \gamma)=\int \mathrm{d} x_{1} \mathrm{~d} x_{2} \mathrm{~d} x_{3} \mathrm{~d} x_{4} \delta(\cdots) x_{1}^{\alpha}\left(x_{2} x_{3}+x_{2} x_{4}+x_{3} x_{4}\right)^{\beta}\left(x_{1} x_{3}+x_{2} x_{3}+x_{1} x_{4}+x_{2} x_{4}+x_{3} x_{4}\right)^{\gamma}$
c) $I_{2}(-2 \epsilon,-1-2 \epsilon,-1+3 \epsilon)$ up to $\mathcal{O}\left(\epsilon^{0}\right)$

Exercise 2: Graph polynomials

Find the graph polynomials and calculate the loop integrals
a)

b)

c)

d)

Dashed lines represent massless propagators and solid lines massive ones.

Exercise 3: Sunset integral

For general masses the sunset integral of 2 b cannot be solved at two-loop. However, in the example above with massless internal lines and $p^{2} \neq 0$ it was rather easy.
a) This is also true at three loop. Show that

b) Find a recurrence relation for the ℓ-loop graph polynomials \mathcal{F}_{ℓ} and \mathcal{U}_{ℓ} as a function of $\mathcal{F}_{\ell-1}$ and $\mathcal{U}_{\ell-1}$. Then construct the ℓ-loop sunset I_{ℓ}, integrate over one Feynman parameter, and relate the result to $I_{\ell-1}$. Finally, solve the resulting recurence relation to obtain

c) Write code to calculate I_{ℓ} using only the algorithm for \mathcal{U} and \mathcal{F} and the master formula. (for the adventurous)
d) Use the optical theorem to relate $\Im I_{\ell}$ to the phase space volume for a $1 \rightarrow n$ decay

$$
\int \mathrm{dPS}^{1 \rightarrow n}=\frac{s^{n-2}}{2(4 \pi)^{2 n-3} \Gamma(n) \Gamma(n-1)} .
$$

