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Abstract

Loop integration is a vital part of any higher order calculation. However, practical tools to actually
compute these integrals are rarely covered in lectures. In this course, I will cover some advanced tools
that have been used in a number of multi-scale multi-loop calculations.

After introducing the problem, I will discuss integration-by-parts reduction to reduce the number
of integrals. Next, I will discuss the method of regions to reduce the number of scales of the integrals.
Finally, I will discuss the method of differential equations and in particular Auxilary Mass Flow to
actually calculate the integrals.

The course will be composed of lectures introducing the techniques and practical, hands-on ex-
ample at the two-loop level.

For further reading, see [1, 2, 3, 4, 5, 6].
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1 Basics of loop integration

The calculation of Feynman integrals is a core problem in the calculation of higher order problems. Over
the last decades, many techniques have been developed, both analytic and numeric. Many resources are
available for commonly used techniques such as differential equations or sector decomposition. In this
course, we will cover some more niche techniques that are useful for specialist application.

Definition 1 (Scalar loop integral). We will almost exclusively consider integrals of form∫
ddk1
(2π)d

· · · ddkℓ
(2π)d

1

Pα1
1 · · · Pαt

t

, (1)

with ℓ loop momenta ki. The powers αi of the propagators Pi may be positive, negative, or zero. The
propagators themselves are either linear or quadratic in the loop momenta. For example,

Pi =

{
(ki + pi)

2 −m2
i + i0+

2ki · pi −m2
i + i0+

, (2)

where i0+ denotes the small imaginary part of the Feynman prescription required to ensure causality.

Definition 2 (Loop measure). When solving loop integrals, we often encounter series expansions of the
Γ function. This means that our intermediary results for the virtual matrix elements will contain terms
proportional to the Euler constant γE = −Γ(1)′ = 0.5772.... This is completely unphysical and will cancel
once the virtual and real corrections are combined. It is, however, convenient to already drop these at
the integral level. Hence, we re-define the loop measure as

[dk] = Γ(1− ϵ)µ2ϵ ddk

iπd/2
. (3)

In what follows, I will often set µ = 1 unless I want to make a specific point. Other definitions are used
in the literature. If you are reusing results by other people make sure to check the conventions they have
used.

Theorem 3 (Tadpole integral). For ℓ = t = 1 we have the tadpole integral∫
[dk]

1[
k2 −m2 + i0+

]n = (−1)n
(
m2
)2−n−ϵΓ(1− ϵ)Γ(n− 2 + ϵ)

Γ(n)
(4)

Proof. Our integrand has poles at k0 = ±
√
k⃗2 +m2 ∓ i0+ as shown in Figure 1. Since the poles are in

the top-left and lower-right quadrant, the integral over the drawn contour vanishes. Since the integrand
falls quickly enough, the integrals over the real and imaginary axis are equal up to a sign

0 =

∮
dk0 =

(∫ ∞

−∞
+

∫ i∞

−i∞
+arcs

)
. (5)

Substituting k0 → ik0 so that k2 = −k20 − k⃗2 = −k2E where kE is a Euclidean momentum. This process
in known as a Wick rotation, transforming our expression to∫

[dk]
1[

k2 −m2 + i0+
]n =

Γ(1− ϵ)

πd/2
(−1)n

∫
ddkE

1[
k2E +m2 + i0+

]n
=

Γ(1− ϵ)

πd/2
(−1)n

∫
dΩd

∫ ∞

0

dkE
kd−1
E[

k2E +m2
]n . (6)

At this point we can set i0+ = 0 since the denominator is always strictly bigger than zero. Using that
the d-dimensional sphere has a volume of ∫

dΩd =
2πd/2

Γ(d2 )
(7)
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Re(k0)

Im(k0)

+
√
k⃗2 −m2 − i0+

−
√
k⃗2 −m2 + i0+

Figure 1: The poles of the k0 intergation and the contour of (5)

and the basic integral (which is nothing but the definition of the B function)∫ ∞

0

dx xα(a+ bx)β =
Γ(1 + α)Γ(−1− α− β)

Γ(−β)
a1+α+β

b1+α
, (8)

we find ∫
[dk]

1[
k2 −m2 + i0+

]n =
Γ(1− ϵ)

πd/2
(−1)n

2πd/2

Γ(d2 )

(
m2
)d/2−nΓ(

d
2 )Γ(n− d

2 )

2Γ(n)

= (−1)n
(
m2
)2−n−ϵΓ(1− ϵ)Γ(n− 2 + ϵ)

Γ(n)
.

(9)

To solve any loop integral with more propagators than loops, we could either solve the loops one by
one or all in one go. Both methods are equivalent though difficult to relate in practical examples. We
will be focusing on the latter case as the former can be viewed as a sub-class.

Lemma 4 (Feynman parametrisation & Cheng-Wu theorem [7]). We write

1

Pα1
1 · · · Pαt

t

=
Γ(r)∏
j Γ(αj)

∫ ∞

0

t∏
j=1

dxj x
αj−1
j δ

(∑
i∈ν

xi − 1

)
1(

P1x1 + ...+ Ptxt

)r . (10)

where r =
∑

j αj and ν a non-empty subset of {1, ..., t} (Cheng-Wu theorem).

Note that most books on QFT will assume ν = {1, ..., t}, reducing the integration region to [0, 1] ×
[1, 1− x1]× .... However, for analytic calculations we have found that having just one element, say i = 1,
in ν = {1} is a better choice, setting one x1 = 1 and keeping the integration bounds at [0,∞]t−1.

Theorem 5. We can calculate a general ℓ-loop integral in terms of graph polynomials or Symanzik
polynomials

I = (−1)rΓ(1− ϵ)ℓ
Γ(r − ℓd/2)∏

j Γ(αj)

∫ ∞

0

t∏
j=1

dxj x
αj−1
j δ

(
xi − 1

) Ur−(ℓ+1)d/2

(F − i0+)r−ℓd/2︸ ︷︷ ︸
G

. (11)
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U and F are the graph polynomials or Symanzik polynomials that can be computed analytically (see (17)),
algorithmically (see Observation 6), or graph-theoretically (see Observation 7).

Further, U > 0 so its prescription does not matter. F , however, can be both positive and negative.
It is hence important to properly include its prescription as F → F − i0+.

Proof. We use (10) to write the dominator as

D = P1x1 + ...+ Ptxt = kT ·M(xi) · k − 2Q(xi, qj)
T k + J(xi, sjk) + i0+ , (12)

with a ℓ×ℓ matrixM , ℓ-vectors k = (k1, ..., kℓ) and Q, depending on the Feynman parameters xi, external
momenta qj and invariants sjk = 2qj · qk. By shifting k → k +M−1Q we cancel the linear term so that
after diagonalising M (with eigenvalues λi) we have

D = kT · diag(λi) · k −∆ with ∆ = QTM−1Q− J − i0+ . (13)

∆ has a −i0+ prescription since we started with J + i0+ in (12). Next, we rescale ki → λ
−1/2
i ki to

factorise the loop integrations

I =
Γ(r)∏
j Γ(αj)

∫ ∞

0

t∏
j=1

dxj x
αj−1
j δ(· · · )

∫
λ
−d/2
1 [dk1] · · ·λ−d/2

ℓ [dkℓ]
1[

kT · k −∆
]r︸ ︷︷ ︸

I′

(14)

We can extend (4) to cover this case

I ′ =

(
Γ(1− ϵ)

πd/2

)ℓ

(−1)r
∫

ddk1,E · · · ddkℓ,E
1[

k21,E + · · ·+ k2ℓ,E +∆
]r

= (−1)r∆ℓd/2−r Γ(1− ϵ)ℓΓ(r − ℓd/2)

Γ(r)
.

(15)

With this, we can write

I =
Γ(r)∏
j Γ(αj)

∫ ∞

0

t∏
j=1

dxj x
αj−1
j λ

−d/2
i δ(· · · )(−1)r∆−r+ℓd/2Γ(1− ϵ)ℓΓ(r − ℓd/2)

Γ(r)
. (16)

Here we have used (4) to find the general Feynman-parametrised form of the ℓ-loop integral. We now
identify

U = detM =
∏
j

λj , F = detM ×∆ , (17)

to arrive at (11).

Observation 6 (Algorithmic calculation of U and F). We can calculate U and F directly without having
to manually find the eigenvalues λi. Instead, we calculate ∆ and detM directly from (12). Collecting
terms of k1

(12) ≡ D1 = k21 t
(2)
1 + k1 · t(1)1 + t

(0)
1 , (18)

we identify t
(2)
1 ≡ λ1 and set

D2 = t
(0)
1 − t

(1)
1 · t(1)1

4t
(2)
1

. (19)

We now repeat this and identify t
(i)
2

D2 = k22 t
(2)
2 + k2 · t(1)2 + t

(0)
2 (20)

in order to construct D3. Eventually, we will reach Dℓ+1 = −∆. This can be efficiently implemented in
Mathematica as shown in Listing 2.
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(* This function takes D_i and U_i == \lambda_1 * ... * \lambda_i and

returns D_{i+1} and U_{i+1} *)

UFstep [{di_ , ui_}, k_] := Module [{t0 , t1 , t2},

t0 = Coefficient[di , k, 0];

t1 = Coefficient[di , k, 1];

t2 = Coefficient[di , k, 2];

{t0 - t1*t1 / (4*t2), ui * t2}

]

(* This functions takes a list of loop momenta and propagators and

folds UFstep over it *)

UF[ks_ , props_] := Module [{d0 , dl , ul},

d0 = Total[props x /@ Range[Length[props ]]];

{dl, ul} = Fold[UFstep , {d0, 1}, ks];

{ul, dl ul}

]

Listing 2: Mathematica implementation of U and F

Observation 7 (Graph-theoretical determination of U and F). U and F can also be determined just
by considering the graph of the loop integral in question. (12) assigns a Feynman parameter xi to each
edge of the graph. For example, consider the following one-loop integral

x1

x2

x3

→ p

→ q

=

∫
[dk1]

1

k21

1

(k1 + p)2 −m2

1

(k1 − q)2 −m2
(21)

U is then determined by adding the products xi for each ℓ line cuts of propagators that results in a
tree-level

U = + +

= x1 + x2 + x3 .

(22)

Similarly, for massless propagators, F is found by adding all (ℓ+1) line cuts with the momentum flowing
through the resulting tree

F0 = + +

= p2x1x2 + q2x1x3 + (p+ q)2x2x3 .

(23)

To account for massive propagators we write

F = F0 +
∑

xim
2
iU , (24)

where mi is the mass of the propagator assosciated to xi.

Theorem 8 (Master formula for loop integrals). An arbitrary integral, inlcuding numerators, can be
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calculated as

I = (−1)rΓ(1− ϵ)ℓΓ(r − s− ℓd/2)

∫ ∞

0

δ
(
xi − 1

)( t∏
j=1

dxj
x
αj−1
j

Γ(αj)

)
(

p∏
j=t+1

∂−αj

∂x
−αj

j

)
Ur−s−(ℓ+1)d/2

(F − i0+)r−s−ℓd/2

∣∣∣∣∣
xt+1=...=xp=0

,

(25)

with r (s) the sum of positive (negative) indices, t the number of positive indices and p the length of the
family as defined above. This implies that

α1, ..., αt > 0 and αt+1, ..., αp ≤ 0 . (26)

Proof. As discussed above, we implement numerators in integrals by setting some αi < 0. However,
that would make the Feynman parametrisation ill-defined because the Γ function diverges for negative
integers. To solve this problem, we note an identity for Mellin transforms called Ramanujan’s master
theorem. In our language it states that the Mellin transform of a function f(x) evaluated at negative
integers −n can be written as the n-th derivative of f

{Mf}(−n) =
∫

dxx−n−1 f(x) = Γ(−n)f (n)(0) . (27)

Now the Γ(−n) cancels, finally leading to our master formula.

Lemma 9 (Lee-Pomeransky representation). An alternative form of (11) is the Lee-Pomeransky repre-
sentation

I =
Γ(d/2)

Γ( l+1
2 d− r)

∏
j Γ(αj)

∫ (∏
j

dxj
xj

x
αj

j

)(
U + F

)−d/2

. (28)

2 Integration-by-parts reduction

Real world calculations often involve many hundreds of integrals; computing these one by one is clearly
infeasible. Instead we require a method to reduce the number of integrals to a manageable number of
so-called master integrals that we can then calculate.

2.1 Organising integrals

Definition 10 (Integral family). If we have ρ independent external momenta (after applying momentum
conservation), we have ((

ρ

2

))
=

(
ρ+ 1

2

)
=

(ρ+ 1)ρ

2
(29)

possible ways to build scalar products (including masses p2i ). Here, we have defined the multichoose
function ((

n

k

))
=

(
n+ k − 1

k

)
=

(n+ k − 1)!

k!(n− 1)!
, (30)

that counts the number of ways one can pick k unordered elements from a set of n elements, allowing for
repetition.

If we have ℓ loop momenta, there are

p =

((
ρ+ ℓ

2

))
−
((
ρ

2

))
= ℓ

1 + ℓ+ 2ρ

2
(31)

possible scalar products of involving at least one loop momentum. A set of propagators of this size that
allows all scalar products to be written through propagators is called a family. These propagators rarely
all belong to the actual diagram and some might be fictitious, added purely to bring up the numbers.

6



(* We define t as the number of propagators ,

r as the sum of pos. powers ,

s as the sum of neg. powers *)

TRS[a_List] := {

Length@Select[a, # > 0 &],

Total[ Select[a, # > 0 &]],

Total[-Select[a, # < 0 &]]

}

Listing 3: Mathematica implementation of t, r, and s given an integral

Definition 11 (Reducible scalar integral). When calculating matrix elements, we often have to find
integrals with numerators. Since the family is complete, we can always write these as propagators and
bring the matrix element into the following form

∑
n

Cn ×
∫ ℓ∏

j=1

[dkj ]
1

Pα1,n

1,n · · · Pαp,n
p,n

. (32)

The powers αi of the propagators Pi may be negative or zero and the Cn are functions of the external
kinematics and the dimension d. These integrals are referred to as reducible scalar integrals.

If we have scalar products with other momenta or even vector integrals we first have to use Passarino-
Veltman decomposition as we would at one-loop.

Definition 12 (reduze organisation [8]). In virtually no case are all αi > 0. Hence, for a given scalar
integral we define

� t: the number of αi > 0

� r =
∑
αi>0

αi the sum of denominator powers

� s = −
∑
αi<0

αi the sum of numerator powers

� the sector ID

ID =

t∑
k=1

2ik−1 with αi1 , ..., αit > 0 . (33)

Obviously s ≥ 0 and r ≥ t. This serves to organise integrals because as soon as one integral in a sector
can be calculated all integrals of the sector can be calculated, at least in principle.

Definition 13 (Corner integral). For a given sector, we call an integral that has only unit powers the
corner integral of that sector. It obviously has r = t.

2.2 Seed identities

To reduce the number of scalar integrals, we are using integration-by-parts (IBP) identities∫
dx u v′ = u v −

∫
dx u′ v . (34)

Theorem 14 (IBP for loop integral). Since the loop integration goes from −∞ to ∞, one can show that
the surface term u v vanishes in dimensional regularisation. In the language of loop integrals∫ ℓ∏

j=1

[dkj ]
∂

∂ki
·

(
q

1

Pα1
1 · · · Pαt

t

)
= 0 , i = 1, ..., ℓ , (35)
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where q represents either a loop or an external momentum. Note that q is inside the derivative s.t. if
q = ki the product rule has to be used on the integrand with

∂

∂k
· k ≡ ∂

∂kµ
kµ = d . (36)

IBP relations now allow us to get identities between different integrals.

Example 15 (Heavy quark bubble). Consider the following example

I(a, b) =

∫
[dk]

1[
k2
]a[

(k − p)2 −M2
]b with p2 =M2 . (37)

We can relate integrals with different a and b through

q = k : 0 = (d− 2a− b)I(a, b)− bI(a− 1, b+ 1) ,

q = p : 0 = ( − a+ b)I(a, b)− bI(a− 1, b+ 1) + aI(a+ 1, b− 1) + 2bM2I(a, b+ 1) .
(38)

Definition 16 (Seed identity & compact notation). We call identities of the form (38) seed identities
because we will be using them to create more identities by choosing a and b.

We can write seed identities using the short-hand notation of [2]. n± indicates that the power of the
n-th propagator is raised (lowered) by one.

0 = d− 2a− b− b 1−2+ ,

0 = − a+ b− b 1−2+ + a 2− 1+ + 2bM2 2+ .
(39)

Proof of Observation 15. Setting q = k, we apply (35)

i(a, b) =
∂

∂kµ

(
kµ

1[
k2
]a[

(k − p)2 −M2
]b
)

= kµ
∂

∂kµ

(
1[

k2
]a[

(k − p)2 −M2
]b
)

+

(
∂

∂kµ
kµ

)
1[

k2
]a[

(k − p)2 −M2
]b

= −2kµ

(
a kµ[

k2
]1+a[

(k − p)2 −M2
]b +

b (kµ − pµ)[
k2
]a[

(k − p)2 −M2
]1+b

)

+
d[

k2
]a[

(k − p)2 −M2
]b

=
(d− 2a− 2b)k2 + 2(2a+ b− d)k · p[

k2
]a[

(k − p)2 −M2
]b+1

.

(40)

We now turn this expression back into scalar integrals of the form I(a′, b′). After loop integration and
setting

∫
[dk] i(a, b) = 0 we finally have our first seed identity

0 = −bI(a− 1, b+ 1) + (d− 2a− b)I(a, b) . (41)

With q = p, we find the other identity.

2.3 Laporta algorithm

We now can use identities like the ones above to reduce integrals. However, doing this by hand is not
practical. Instead, we use a modified version of Gaussian elimination to solve a very large though sparse
system of linear equations by focussing on the difficult integrals first.
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moms = {LTensor[k1 , mu], LTensor[p, mu], LTensor[q, mu]};

ibps = Collect[ToFamily@Expand[

D[moms FromFamily[int[{a1,a2,a3}]],k1]

]/. onshell ,_int ,Factor ];

Listing 4: Mathematica implementation of the generation of seed identities

I1 ≺≻ I2? t1 <> t2? s1 <> s2? r1 <> r2? I1 ≡ I2

I1 ≻ I2

I1 ≺ I2

= = =

> > >

< < <

Figure 5: A common lexicographical ordering

Definition 17 (Lexicographic ordering). Given two integrals, we need a way to decide which one is more
complicated. The exact specification of this ordering does not matter as long as it is consistent. We will
be using the ordering of Figure 2.3: given I1(t1, r1, s1) and I2(t2, r2, s2), it prefers small t, s, and r in
that order.

Theorem 18 (Laporta’s algorithm). We can now reduce a set of irreducible integral to a (hopefully)
small set of master integrals using Laporta’s algorithm [9, 10] (Figure 6 and Listing 7)

1. Generate imax seed identities of Definition 16

2. List all jmax reducible integrals up to some cut-off rmax and smax and order them using the lexico-
graphical ordering

3. Apply an identity to an integral and call the resulting relation R

4. Substitute all known relations into R, obtaining a relation R′ =
∑

i ciIi = 0

5. If R′ is trivial, i.e. ci = 0 and hence 0 = 0, go back to Step 3. Otherwise, solve R′ for the most
complicated integral and remember this relation.

6. Go back to Step 3 until all integrals and seed identities have been used.

7. Re-substitute and clean up the relations

This algorithm converges because the cut-off points rmax and smax. The system is naturally over-
determined because the number of new integrals grows slower than the number of equations, resulting in
many trivial relations along the way.

Observation 19. The implementation provided here is only for educational purposes as it is horribly
inefficient. Instead, one should use one of many public codes such as AIR [11], FIRE [12], Kira [13],
or reduze [8]. These codes essentially all implement Laporta’s algorithm albeit much cleverer. For
example, Kira uses finite-field sampling to improve the performance, especially for the back-substitution
which can quickly become a bottleneck. Still, the IBP reduction is often a major bottleneck of higher
order calculations and can run for months on a large cluster.

9



rmax, smax

{IBP}i
for i =

1, · · · , imax

{I(α⃗)}j
for j =

1, · · · , jmax,

r ≤ rmax,

s ≤ smax

i = j = 1,
rels = {}

Use IBPi
on I(α⃗)j
→ R

R/.rels =∑
ckIk =
R′

ck = 0∀k?

solve R′

for most
compli-
cated I0

add I0 =
−
∑

1
bk
b0
Ik

to rels

j = jmax?
re-sub
& clean

rels

i < imaxi++

i = 1, j++

N

Y

Y

N

NY

Figure 6: Flowchart for Laporta’s algorithm
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rmax = 5;

smax = 3;

IsOkay [{t_ , r_ , s_}] /; And[

t > 0,

rmax >= r,

smax >= s

] = True;

IsOkay[__] = False;

intlist = Flatten[Outer[

int [{##}]& ,

Sequence @@ ConstantArray[Range[-smax , rmax], Length[family ]]

]];

seedPre = Sort[

Select[intlist , IsOkay @* TRS],

LexiOrdered

];

seedRep = seedPre /. int[a_] :> ReplaceAll[Thread [( ToExpression["a"<>

↪→ ToString [#1]] &/@ Range[Length[family ]]) -> a]];

(* We now run Laporta ’s algorithm *)

rels = {i_int /; MemberQ[zerosectors , Sector[i]] -> 0};

Table[

rel = Collect[seed[id] //. rels , _int , Factor ];

If[rel =!= 0,

rels = Flatten[Join[rels , Solve[rel == 0, MostComplicated[rel

↪→ ]]]];

],

{seed , seedRep [[ ;; ]]}, {id, ibps}

];

(* At the borders of the seed range we might get some useless

identities that relate two complicated integrals we don ’t know. *)

IsUseless[a_ -> b_] := Quiet[

LexiOrdered[MostComplicated[a], MostComplicated[b]] === 0

]

RemoveUseless[rels_] := Select[rels , Not@*IsUseless]

(* We also need to do the re -substitution and simplification *)

rels2 = RemoveUseless@Thread[

rels [[2 ;;, 1]] -> Collect[

rels [[2 ;;, 1]] //. rels , _int , Factor

]

];

Listing 7: Mathematica implementation of Laporta’s algorithm
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3 Method of differential equations

We have now a reduced our problem to a set of master integrals that we need to compute. While it is
at least in principle possible to calculate one integral at a time using the representation in (25), this is
rarely a good idea since we often have many hundreds of integrals and the required integrals cannot be
solved analytically. Instead, we would prefer a method that can solve all master integrals in one stroke.
The method of differential equations is the way to do this.

3.1 Deriving differential equations

Observation 20. Feynman integrals are functions of the dimensional regulator ϵ and masses and invari-
ants collectively called si. Since derivatives w.r.t. the si can be related to derivates w.r.t. the momenta,
it is easy to see the derivative of a Feynman integral is another Feynman integral in the same family. By
IBP-reducing these back to the same set of master integrals, we can write a closed-form linear system of
differential equations for the master integrals.

Theorem 21 (Derivatives of Feynman integrals). The derivate of a set of Feynman integrals I⃗ w.r.t.
some kinematic parameter s can be written as

∂I⃗

∂si
=Mi({s}, ϵ)I⃗ (42)

where Mi is a matrix that depends on the kinematics and ϵ. The derivate ∂si can be written in terms of
the momenta

∂

∂si
=
∑
jk

ai,jk pk · ∂

∂pj
, (43)

with coefficients ai,jk that are determined by applying this operator to the invariants themselves.

Example 22 (Heavy quark form factor). Consider the family in 7

Iαβγ =

∫
[dk1]

1[
k21
]α 1[

(k1 + p)2 −m2
]β 1[

(k1 − q)2 −m2
]γ (44)

with p2 = q2 = m2 and (p+ q)2 = s. The derivative w.r.t. to s can be written as

∂

∂s
=
(
as,11 p+ as,21 q

)
· ∂
∂p

+
(
as,12 p+ as,22 q

)
· ∂
∂q

. (45)

By having this act on p2, q2, and p · q, we find

∂(p2)

∂s
=
(
as,11 p+ as,21 q

)
· ∂(p

2)

∂p︸ ︷︷ ︸
2p

+
(
as,12 p+ as,22 q

)
· ∂(p

2)

∂q︸ ︷︷ ︸
0

,

∂(q2)

∂s
=
(
as,11 p+ as,21 q

)
· ∂(q

2)

∂p︸ ︷︷ ︸
0

+
(
as,12 p+ as,22 q

)
· ∂(q

2)

∂q︸ ︷︷ ︸
2q

,

∂(p · q)
∂s

=
(
as,11 p+ as,21 q

)
· ∂(p · q)

∂p︸ ︷︷ ︸
q

+
(
as,12 p+ as,22 q

)
· ∂(p · q)

∂q︸ ︷︷ ︸
p

.

(46)

This can be simplified to

0 = as,11 2m2 + as,21
(
s− 2m2

)
,

0 = as,22 2m2 + as,12
(
s− 2m2

)
,

1

2
=
(
as,11 + as, 22

) s− 2m2

2
+
(
as,21 + as,12

)
m2 .

(47)
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When solving this under-determined linear system we have some choice. Here, we choose as,11 = 0 and
arrive at

∂

∂s
=

2m2

(4m2 − s)s
p · ∂

∂q
+

2m2 − s

(4m2 − s)s
q · ∂

∂q
. (48)

A similar calculation with am2,12 = am2,21, leads us to

∂

∂m2
=
pµ − qµ

4m2 − s

( ∂

∂pµ
− ∂

∂qµ

)
. (49)

We can now trivially calculate the effect of our two operators on an integral Iαβγ . In the notation of
Definition 16

∂s =
γ

4m2 − s

(
2m2

s
2−3+ − 1−3+ +

s− 2m2

s

)
,

∂m2 =
1

4m2 − s

(
2β1−2+ − β3−2+ + 2γ1−3+ − γ2−3+ − β − γ

)
.

(50)

Example 23 (Master integrals in the heavy quark form factor). We can now pick two integrals, eg. I001
and I011, apply (50), perform the IBP reduction and arrive at our differential equations. For this it is

useful to collect our two master integrals in a vector I⃗ = (I001, I011)
T

∂I⃗

∂s
=

1

(4m2 − s)s

(
0 0

2− 2ϵ −2m2 + sϵ

)
I⃗ ,

∂I⃗

∂m2
=

1

(4m2 − s)m2

(
(4m2 − s)(1− ϵ) 0

−2 + 2ϵ 2m2(1− 2ϵ)

)
I⃗ .

(51)

Theorem 24 (Integral scaling). When our integral depends on multiple scales si (such as s and m2 in
the above example), we have multiple matrices Mi. Note that∑

i

siMi = diag(λi) , (52)

where the λi = dl/2− ri+ si are the scaling dimension of the i-th integral (cf. notation of Definition 12).
This is an extremely useful cross check that the matrices Mi were correctly derived.

Theorem 25 (Some useful identities). We often want to change variables and/or basis.

� We can change our basis of master integrals from I⃗ to I⃗ ′ = T−1I⃗ with some invertible matrix T .
This means our Mi change to

M ′
i = T−1 ·Mi · T − T−1 · ∂T

∂si
(53)

� To change from the variable si → s′i, we write

Mi′ =Mi ×
∂si
∂s′i

∣∣∣∣∣
si→s′i

(54)

� It is often advisable to choose scaleless variables and rescale the integrals so that all λi = 1.

3.2 Canonical basis and d log form

Example 26 (Change of variables). Let us choose T = diag(m−2ϵ,m−2−2ϵ)/ϵ. This way our master
integrals become

J⃗ =
(
m2ϵϵI001,m

2+2ϵϵI011

)T
(55)
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and our matrices becomes

M ′
s =

1

4m2 − s

(
0 0

2m2

s (1− ϵ) − 2m2

s + ϵ

)
,

M ′
m2 =

1

4m2 − s

(
4m2−s

m2 0
−2 + 2ϵ 6− s

m2 (1 + ϵ)

)
.

(56)

One can easily see that sM ′
s +m2M ′

m2 = 1. Let us now introduce y = s/(4m2). The new My is

My =
1

1− y

1

2y

(
0 0
1 −1

)
+

1

1− y
ϵ

(
0 0

− 1
2y 1

)
. (57)

Definition 27 (Canonical form). If all matrices Mi can be brought into the form Mi = M
(0)
i + ϵM

(1)
i

we call the basis precanonical. A canonical basis has further M
(0)
i = 0. In other words, the differential

equation can be written as

∂J⃗

∂si
= ϵMiJ⃗ . (58)

Once the differential equations are in canonical form, solving them is fairly straightforward, at least in
principle.

Definition 28 (d log form). In some cases it is further possible to simplify the equations in terms of
differential forms

dJ⃗ = ϵdAJ⃗ , (59)

where A can be written as

A =
∑
i

Ai log ηi (60)

with Ai ∈ Q matrices of rational numbers. This is referred to as the d log form and it usually (but not
always [14])1 possible to write the answer in term of polylogarithms. The ηi are called letters and their
set {ηi} the alphabet. In practise this means that the original M can be written as

M =
∑
i

Ai

ηi
. (61)

Example 29. There are algorithms that can assist in arriving at a canonical or precanonical form.
However, the process often is a mixture of guesswork, experience, and computer codes. In our case, we
can have

J⃗ =
(
ϵm2ϵ+2 I002, ϵ

√
s
√
s− 4m2m2ϵ+2 I012

)T
, (62)

with the matrix

Ms = ϵ

(
0 0
1√

s
√
s−4m2

− 1
s−4m2

)
. (63)

The presence of squared propagators and square roots in J⃗ is a fairly common feature. To remove these,
we perform one more change of variables s/m2 = −4x2/(1− x2) and arrive at

Mx = ϵ

(
0 0

1
1+x + 1

1−x
1

1+x − 1
1−x

)
. (64)

Now our matrix is in d log form

dJ⃗ = ϵ d
(
A1 log(1 + x) +A2 log(1− x)

)
J⃗ (65)

A1 =

(
0 0
−1 1

)
A2 =

(
0 0
1 1

)
(66)

1This can eg. happen if the d log basis has multiple non-simultaneously rationalisable square roots.

14



3.3 Chen-interated integrals

Once our integral is in d log form, we are often done since our integral can now be solved in terms of
Chen iterated integrals [15].

Definition 30 (Chen iterated integral). The formal solution to (59) is a Chen iterated integral

J⃗(s⃗, ϵ) = P exp

[
ϵ

∫
γ

dA

]
J⃗0(ϵ) . (67)

The P indicates path-ordering along the integration contour γ. The J⃗0(ϵ) is the boundary condition of
our differential equation.

Example 31 (Boundary bonditions of the heavy quark form factor at x = 0). Before we can solve the
integral for arbitrary x, we need to solve it for a specific value of x to act as our boundary condition.
For this we pick x = 0 which corresponds to s = 0. Since the original integral I012 is regular as
s → 0, our master integral is zero I012(s = 0) = 0. The other integral I002 is a single-scale integral
that could not be computed using differential equations anyway. However, it is trivial to see from (4)
I002 = −m−2ϵΓ(1− ϵ)Γ(ϵ). Hence, check sign

J⃗0(ϵ) =
(
−m2Γ(1− ϵ)Γ(1 + ϵ), 0

)T
. (68)

Definition 32 (Generalised polylogarithms). The class of function that is obtained from iterated integrals
of rational functions are called generalised or Goncharov polylogarithms (GPL) [16]

G(z1, · · · , zm; y) =

∫ y

0

dt1
t1 − z1

∫ t1

0

dt2
t2 − z2

· · ·
∫ tm−1

0

dtm
tm − zm

. (69)

These functions are extremely well studied and many tools exist to work with them [17, 18, 19, 20, 21]

Theorem 33. To turn the formal solution (67) into a practical solution, we expand it order-by-order

J⃗(s⃗, ϵ) =

∞∑
n=0

ϵnJ⃗ (n) , (70)

J⃗ (0)(s⃗, ϵ) = J⃗
(0)
0 ,

J⃗ (n)(s⃗, ϵ) =
∑
i

∫ x

0

dx′

ηi

∂ log(ηi)

∂x′
Ai · J⃗ (n−1) + J⃗

(n)
0 .

(71)

Example 34. We have with m = 1

J⃗ (0) =

(
−1
0

)
, (72)

J⃗ (1) =

∫ x

0

dx′

x′ − 1

(
0
1

)
+

∫ x

0

dx′

x′ + 1

(
0
−1

)
=

(
0

G(1;x)−G(−1;x)

)
, (73)

J⃗ (2) =

∫ x

0

dx′

x′ − 1

(
0

G(1;x)−G(−1;x)

)
+

∫ x

0

dx′

x′ + 1

(
0

G(1;x)−G(−1;x)

)
+

(
−ζ2
0

)
=

(
−ζ2

G(−1, 1;x)−G(−1,−1;x) +G(1, 1;x)−G(1,−1;x)

)
. (74)

We could continue with this expansion as long as we want to and hence arrive at an expression for our
integral.

4 Method of regions

In general, the calculation of master integrals with full dependence of any parameter is very difficult
and time consuming. However, in many cases this is not needed, often because the parameters have a
strong hierarchy. This could either mean that the electron mass m2 is much smaller than the momentum
transfer Q2 or that the W boson mass m2

W is much larger. In these cases, we instead calculate the
integrals expanded in the small parameter (m/Q2 or Q2/m2

W ). The technique used to achieve this is the
method of regions [22].
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4.1 Momentum space

Example 35 (Heavy particle). Let us first consider the case of a heavy particle m2
X ≫ s in

I =

∫
[dk]

1[
k2 −m2

X + i0+
][
k2 − 2k · p+ i0+

] (75)

with p2 = m2 ≪ m2
X . The naive expansion of the integrand

1[
k2 −m2

X + i0+
][
k2 − 2k · p+ i0+

] = − 1

m2
X

1[
k2 − 2k · p+ i0+

] +O
( 1

m4
X

)
(76)

is obviously wrong since integration and expansion does not commute. The expansion is wrong in the
region where k ∼ mX .

Theorem 36 (The method of regions in momentum space). We can expand an integral already at
integrand level by identifying all relevant regions, expanding in those up to whatever power we desire and
adding them up. In principle infinitely many such regions exist, but most of them vanish in dimensional
regularisation.

Proof. We only prove the example, though this argument can be formalised.
We split the integration at the scale Λ which is m≪ Λ ≪ mX

I =

∫ Λ

0

[dk]
1[

k2 −m2
X

][
k2 − 2k · p

] + ∫ ∞

Λ

[dk]
1[

k2 −m2
X

][
k2 − 2k · p

]
= − 1

m2
X

∫ Λ

0

[dk]
1[

k2 − 2k · p
]︸ ︷︷ ︸

soft

+

∫ ∞

Λ

[dk]

(
1[

k2 −m2
X

][
k2
] + 4(k · p)2[

k2 −m2
X

]3[
k2
])︸ ︷︷ ︸

hard

+O
( 1

m4
x

) (77)

The first term is generally referred to the soft region and the second term as the hard region. We now
need to relate these integrals back to what we can calculate. It turns out we can just integrate over the
whole range since the difference is scaleless, eg.∫ ∞

Λ

[dk]
1[

k2 − 2k · p
] m≪Λ

=

∞∑
i=0

∫ ∞

0

[dk]
(m2)i[
k2
]i+1

= 0 . (78)

We can now solve the integrals in (77) over the whole range and obtain

I =
1

ϵ
+ 1 + log

µ2

m2
X

+
m2

2m2
X

(
1 + 2 log

m2

m2
X

)
. (79)

This agrees with what we would obtain had we expanded the original integral after integration.

Observation 37. This is directly connected to the concept of effective field theories (EFT) where we
add new operators Q and Wilson coefficients C to our Lagrangian

L → L+
∑
i

CiQi . (80)

The hard region corresponds to the renormalisation of the Wilson coefficients while the soft region is the
loop calculation in the EFT. In this language, the different orders in the expansion correspond directly
to the dimensionality of the operators.

This type of expansion is very useful if we want to integrate out a heavy scale. However, we need
more tools if we want to deal with light scales as well.

Definition 38 (Light-cone coordinates). Let pi = Ei(1, n⃗iβi) be a high energetic particle (β = 1−O(λ2)),
moving in the n⃗i direction. We now decompose its momentum into light-cone basis vectors ni = (1, n⃗i)/

√
2

and n̄i = (1,−n⃗i)/
√
2.2 We now write any momentum pj as

pj = (ni · pj)n̄i + (n̄i · pj)ni + p
(⊥,i)
j = p

(+,i)
j + p

(−,i)
j + p

(⊥,i)
j = (ni · pj , n̄i · pj , pj,⊥)i . (81)

2Our definition of n and n̄ differs from the standard convention by the normalisation factor 1/
√
2.
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For the case i = j our original energetic particle pi is now

pi =
(
Ei(1− βi)/

√
2, Ei(1 + βi)/

√
2, pi,⊥

)
i
∼ (λ2, 1, λ)i . (82)

We have especially p2i = m2 ∼ λ2 as planned

p2i = 2p
(+,i)
i · p(−,i)

i +
(
p
(⊥,i)
i

)2
= m2 ∼ λ2 . (83)

Here we have used that, since n̄2 = n2 = n · p⊥ = 0,

p
(±,i)
j · p(±,i)

k = p
(±,i)
j · p(⊥,i)

k = 0 (84)

Definition 39 (Momentum regions). Using light-cone coordinates, a region of the loop momentum k is
then defined as a specific choice of parameters a, b, and c where k ∼ (λa, λb, λc)i for a given direction ni.
At this point we expect an infinite number of regions corresponding to the infinite possible choices of a,
b, and c.3 Fortunately, almost all of the infinite number of regions turn out to be zero.

Common momentum regions that contribute are

hard: k ∼ (1, 1, 1) (85a)

soft: k ∼ (λ, λ, λ) (85b)

collinear: k ∼ (λ2, 1, λ) (85c)

ultrasoft: k ∼ (λ2, λ2, λ2) , (85d)

Note that these scalings are only defined for a given direction. If we have multiple directions of energetic
particles as is often the case, we have to distinguish them, leading to more regions.

We might be able to reduce the number of directions if some particles are back-to-back as is the case
in γ∗ → e+(n1)e

−(n2). The (λ2, 1, λ)2 region is actually the same as the (1, λ2, λ)1 region, reducing the
amount of bookkeeping required.

In what follows, I will drop the index for the direction when it is unambiguous.

Example 40 (Light particles). Consider the following integral

I =
p+ q

k − q

k + p

=

∫
[dk]

1[
(k + p)2 −M2

][
(k − q)2 −m2

]2 , (86)

with q2 = m2 ≪ p2 = M2 ∼ (p+ q)2 = s. A convenient choice is p ∼ (1, 1, 0), q ∼ (0, 1, λ) which results
in

p2 = 2p+ · p− =M2 ∼ 1 and q2 = q2⊥ = m2 ∼ λ2 . (87)

By trying all sensible regions, we find that all but two are scaleless. Consider eg. k ∼ (λ, λ, λ)

Is =
1

λ3

∫
[dk]

1[
2k+ · q−

]2[
2k · p

] = 0 , (88)

where we have used that k+·q− = k·q−. The only scaleful regions are k ∼ (1, 1, 1) (hard) and k ∼ (λ2, 1, λ)
(collinear).

3One can show that c = (a+ b)/2 with other choices resulting in scaleless integrals.
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� In the hard region we have k ∼ (1, 1, 1) and we can write

Ih =

∫
[dk]

1[
(k + p)2 −M2

][
(k − q−)2

]2 +O(λ2) . (89)

The leading term is just the original integral with m = 0 since q2− = 0. In real-world applications,
we might be able to obtain this from already known QCD results. We have

Ih = Γ(1− ϵ)Γ(ϵ)

∫
dx1dx2δ(· · · )x1

(
x1 + x2

)−2+2ϵ(
M2x22 + (M2 − s)x1x2

)ϵ
= Γ(1− ϵ)Γ(ϵ)

∫ 1

0

dx2(1− x2)x
−ϵ
2

(
M2 − s+ sx2

)−ϵ

=
(1− x)ϵ

M2

(M2

µ2

)−ϵ
(
Γ(1− ϵ)Γ(1 + ϵ)

1− ϵ
2F1

[
1− ϵ, 1 + ϵ

2− ϵ
;x

]

+ Γ(1− ϵ)Γ(ϵ)2F1

[
−ϵ, 1 + ϵ

2− ϵ
;x

])

=
1− x

M2

(
1

ϵ
+
(
2 +

1

x

)
log(1− x) + log

µ2

M2

)
+O(m2) .

(90)

where we have set δ(1 − x1 + x2) and defined x = s/(s −M2). Here we have used a 2F1 function
that we will encounter again in Section 5 and expanded it with HypExp [23].

� In the collinear region, we have account for a factor λ4 from d4k. Hence, we have

Ic =

∫
[dk]

1[
2k− · p+

][
k2 − 2k · q

]2
= −Γ(1− ϵ)Γ(1 + ϵ)

∫
dx1dx2δ(· · · )

x−1+ϵ
1(

m2x1 + (m2 +M2 − s)x2
)1+ϵ

= −M−2
(m2

µ2

)−2ϵ

Γ(1− ϵ)Γ(ϵ)(1− x)

=
1− x

M2

(
− 1

ϵ
+ log

m2

µ2

)
.

(91)

Here, we once again see that we have lost some complexity since the U polynomial is trivial.

Both Ic and Ih are divergent but their sum is finite as was the original integral. However, Ih ∝
(M2/µ2)−ϵ and Ic ∝ (m2/µ2)−ϵ so that log(M2/m2) remains

Ic + Ih = −1− x

xM2

(
x log

M2

m2
+ (1− 2x) log(1− x)

)
. (92)

This is a common feature in the method of regions: all regions are separately more divergent than the
total result which can introduce new logarithms.

4.2 Parameter space

While the method of region is doubtlessly an invaluable tool, especially when we want to connect its
regions to effective theories. However, if all we want to do is calculate integrals without having to bother
with a physical intuition, it can be unwieldy, especially since some regions are not visible for a given
momentum routing. It turns out we can formulate the method of regions at the level of the Feynman
parameters which is much more general and allows for easier automation [24, 25].

Since an important aspect of the method of region is scalelessness, we need to formalise this at the
level of the Feynman parameters.

18



Lemma 41 (Scaleless integrals). We call an integral scaleless if rescaling the loop momentum and/or
the external momenta results in a global factor. These integrals vanish in dimensional regularisation. For
example,

I =

∫
[dk]

1[
k2
]n →

∫
[d(αk)]

1[
(αk)2

]n = αd−2nI = 0 . (93)

In the language of Feynman parameters, the integral vanishes if we can rescale a strict subset of parameters

U(x1, · · · , αxj , · · · , xn) = αuU(x1, · · · , xj , · · · , xn)
F(x1, · · · , αxj , · · · , xn) = αfF(x1, · · · , xj , · · · , xn) ,

(94)

for some scaling dimensions u and f . For simplicity we only consider UF → αu+fUF .

Theorem 42 (The method of regions in parameter space). To expand a parameter integral, we multiply
the small kinematic invariants with appropriate power of λ in F . A region is defined as a (n + 1)-
dimensional vector v⃗ = (1, v1, · · · , vn) where xi ∼ λvi . We can relate v⃗ to the complex hull of the point
cloud that is spanned by U and F (see proof and Example 43 for details). This is implemented in public
codes such as asy [24, 25] or pySecDec [26].

Example 43 (Example in parameter space). For the example (86) we have v⃗h = (1, 0, 0) and v⃗c =
(1, 0,−1). We have hence

Ih = −Γ(1− ϵ)Γ(1 + ϵ)

∫
dx1dx2δ(· · · )x2

(x1 + x2)
−1+2ϵ(

M2x21 + (M2 − s)x1 x2
)1+ϵ , (95)

Ic = −Γ(1− ϵ)Γ(1 + ϵ)

∫
dx1dx2δ(· · · )

x2ϵ2(
m2x22 + (M2 − s)x1 x2

)1+ϵ . (96)

The integration of the Feynman parameters is now trivial again as above.

Proof of Theorem 42. Consider a term in the Lee-Pomeransky polynomial F + U (cf. (28)), it will have
the structure

λr0xr11 · · ·xrnn ≡ r⃗ = (r0, r1, . . . , rn) . (97)

We view the terms as a point cloud CF+U in an (n + 1) dimensional space that we sometimes split as
CF+U = CF ∪ CU . F is homogeneous, i.e. r1 + · · · + rn = ℓ + 1, meaning that all terms in CF live
on an n dimensional hyperplane. Were the dimensionality lower than n, we could factor out a Feynman
parameter, making the integral scaleless.

For a given region, this term will scale as

λr0
(
x1λ

v1
)r1 · · · (xnλvn)rn ∼ λr0+v1r1+···+vnrn = λv⃗·r⃗ . (98)

After expanding F and U in λ, all remaining terms have to have the same scaling since otherwise the
expansion would not have been complete. In other words, the remaining terms belong to a hyperplane
orthogonal to v⃗. Points that are above this hyperplane are more suppressed in λ since they have larger
r0, the power of λ.

If the dimensionality of this hyperplane is lower than n, the integral is scaleless. Thus we are looking
for facets of the envelope of the point cloud CF+U . The v⃗ are the (inwards facing) normal vectors of
these facets with v1 > 0. This automatically selects only the bottom facets.

Example 44 (Construction of v⃗). For the example (86) we have

F =M2x21 +M2x1x2 − sx1x2 +m2x22λ ,

U = x1 + x2 .
(99)
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r1

r2

r0

v⃗ (1)

v⃗ (2)

Figure 8: The point clouds CF in red and CU in black and their convex hull in blue. The grey shaded
region corresponds to the requirement that F is homogeneous, i.e. r1+ r2 = ℓ+1. An interactive version
of this plot can be found on the course website.

This results in the point cloud

CF =
{
(0, 2, 0), (0, 1, 1), (0, 1, 1), (1, 0, 2)

}
CU =

{
(0, 1, 0), (0, 0, 1)

} (100)

as shown in Figure 8. Next, we construct the convex hull of CF+U = CF ∪CU . It has five facets of which
we only care about two, those spanned by

F1 =

r⃗ (1)

r⃗ (2)

r⃗ (3)

 =

0 0 1
0 1 1
1 0 2

 and F2 =


r⃗ (1)

r⃗ (2)

r⃗ (3)

r⃗ (4)

 =


0 0 1
0 1 0
0 1 1
0 2 0

 . (101)

We can find the normal vectors v⃗ (1) and v⃗ (2) by finding the kernel of these matrices as

v⃗ (1) =
(
1, 0,−1

)
and v⃗ (2) =

(
1, 0, 0

)
(102)

Here, v⃗ (2) corresponds to the hard region and v⃗ (1) to the collinear region. We do not, for example, care
about this facet

F3 =

0 1 1
1 0 2
0 2 0

 (103)

which has v⃗ (3) = (0,−1,−1).

Lemma 45 (Lee-Pomeransky vs. Feynman representation). The regions obtained from the Lee-Pomeransky
representation CF+U are identical to those of the Feynman representation CUF since their lower facets
have a one-to-one correspondence [27]. Using this, we can now consider n = 3 integrals and still visualise
the result. We do this by first projecting out the λ dimension in CF+U and then constructing CUF .
Because CUF lies in a single hyperplane, we can reintroduce the λ direction as orthogonal to that plane.
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Proof. We can construct a surface C ′
UF by finding the intersection between all vertices in CU and CF .

This surface now corresponds to CUF up to a rescaling. There is a statement from alebraic geometry
called Cayley’s trick states that the convex hulls of C ′

UF and CU+F are identical.

Lemma 46 (Connecting parameter and momentum regions). For a given momentum region, we find the
(inverse) region vector −v⃗ by considering how each propagator scales. Consider for example the collinear
region of Example 40

P1 = (k + p)2 −M2 = λ0
[
2k− · p+

]
+O(λ) , (104a)

P2 = (k − q)2 −m2 = λ2
[
k2 − 2k · q

]
. (104b)

This region has v⃗ (c) = (0,−2).

Proof. Consider the denominator after Feynman parametrisation (12)

D = P1x1 + ...+ Ptxt (105)

The expansion is only complete if there is no scale seperation between the different terms. This means
that if Pi scales as λ

−vi , xi needs to scale as λvi .

Example 47 (Massless Sudakov form factor [28]). Consider the following integral

I = =

∫
[dk]

k2 (k − p)2 (k − q)2
, (106)

with p2 = q2 = m2 ≪ (p+ q)2 = s. We can easily construct

U = x1 + x2 + x3 and F = sx1x2 −m2λ(x1x3 + x2x3) (107)

to find the point clouds CU and CF . The projection along the λ direction is shown in Figure 9a with
the point cloud for CUF drawn in between. The resulting hexagon for CUF can now be rotated and
again stretched out in the λ direction as shown in Figure 9b. This allows us now to identify the upward
pointing facets and identify four regions

v⃗ (1)

v⃗ (2)

v⃗ (3)

v⃗ (4)

 =


0 0 0
−2 0 −2
−2 −2 0
−4 −2 −2

 ≡


hard

collinear to q
collinear to p

soft

 . (108)

Example 48 (Massive Sudakov form factor). Consider a slightly modified integral

I ′ = =

∫
[dk]

(k2 −m2) ((k − p)2 −m2) ((k − q)2 −m2)
, (109)

with p2 = q2 = m2 ≪ (p+q)2 = s. We now get U ′ = U and F ′ = F+U(x1+x2+x3)m2λ2. Constructing
again the convex hull for CUF we note that it now has one face less. This also translates to a missing
soft region v⃗ (1)

v⃗ (2)

v⃗ (3)

 =

 0 0 0
−2 0 −2
−2 −2 0

 ≡

 hard
collinear to q
collinear to p

 . (110)

Lemma 49 (Singularities and the convex hull). Singularities of an integral arise from facets of the convex
hull that lie on a plane that also contains 0⃗ [26]. We can now distinguish two cases
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r1

r2

r0

(a) CU , CF and CUF in grey (b) CUF in the rotated frame with the convex hull

r1

r2

r0

(c) Regions identified on CUF with non-affine
facets highlighted in red

Figure 9: The geometric construction of the massless Sudakov form factor. For explanation, see Exam-
ple 47
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r1

r2

r0

(a) CU , CF and CUF in grey (b) CUF in the rotated frame with the convex hull

r1

r2

r0

(c) Regions identified on CUF with non-affine facets
highlighted in red

Figure 10: The geometric construction of the massive Sudakov form factor. For explanation, see
Example 48
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� outer facets that touch at most one region are regulated dimensionally and exist independent of
the method of regions,

� inner facets that touch two regions are not regulated dimensionally and require an analytic regula-
tor, i.e. a shift of the propagator powers.

These are highlighted in red Figures 9c and 10c. It is clear that both have two outer facets but the latter
also has in inner facet which means the regions are not regulated dimensionally.

Proof. In this proof, we follow [26, 29]. In the Lee-Pomeransky representation, the most general case we
need to consider is

I =

∫ ( t∏
i=1

dxi x
αi−1
i

)(∑
k

ckx⃗
r⃗k
)−d/2

. (111)

One can show that the integration region Rt can be decomposed into into simplicial cones defined by rays
n⃗F

σ =
{∑

F∈σ

aF n⃗F : aF > 0
}
. (112)

The rays n⃗F are the normal vectors of a facet F of the convex hulls discussed above. The facets themselves
can be described in Hessian normal form by a normal vector n⃗ and an offset a as

F = {y⃗ : n⃗F · y⃗ + aF = 0} . (113)

By considering all t-dimensional cones σ we can reconstruct the full integration region Rt. Transforming
from the cartesian coordinates {e⃗i} to the local coordinates of the facets we have

xi =
∏
F∈σ

yn⃗F ·ei , (114)

for each cone. We now have

I =
∑
σ

|σ|
∏
F∈σ

∫
dyF yn⃗F ·α⃗−1

F

(∑
k

ck
∏
F∈σ

yn⃗F ·r⃗k
F

)−d/2

, (115)

with the Jacobian |σ|. To guarantee that the complicated monomial has positive exponents, we factor
our y−aF

F .

I =
∑
σ

|σ|
∏
F∈σ

∫
dyF
yF

y
n⃗F ·α⃗+d

2aF

F

(∑
k

ck
∏
F∈σ

yn⃗F ·r⃗k+aF

F

)−d/2

︸ ︷︷ ︸
g(y)

. (116)

Since the r⃗k ∈ F , the g part is now free of singularities. Hence, for I to be finite, we require

n⃗F · α⃗+
d

2
aF > 0 . (117)

If aF ̸= 0, the integral is regulated dimensionally. The analytic regulator now sets some αi → αi±η with
η > 0 such that the new α⃗ is no longer orthogonal to any n⃗F .

5 Mellin Barnes integration

When calculating loop integrals, we are often faced with having to integrate polynomials to some non-
integer power. Since we can (essentially) only integrate using the definition of the Γ function4 the most
complicated trivially solvable integral is∫ ∞

0

dx xα(a+ bx)β =
Γ(1 + α)Γ(−1− α− β)

Γ(−β)
a1+α+β

b1+α
. (8)

It goes without saying that most real-world integrals are more complicated than this.

4Technically, we can also solve integrals of the form
∫
dx, xa(1+x)b(z+x)c using the methods presented in this section.

Hence this integral is just a shortcut to what we show here.
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5.1 The Mellin Barnes theorem

Observation 50 (Heavy-quark form factor). Consider once again the following one-loop integral

I(a) =

∫
[dk]

1[
k2
]a[

k2 + 2k · p
][
k2 − 2k · q

] (118)

with p2 = q2 = m2, (p + q)2 = s and some integer a. After Feynman parametrisation we find (see eg.
Observation 7)

I(a) = (−1)a
Γ(1− ϵ)Γ(a+ ϵ)

Γ(a)

∫
dx1dx2dx3 δ(· · · )xa−1

1

(
x1 + x2 + x3

)−2+a+2ϵ(
m2 x22 + (2m2 − s)x2x3 +m2 x23

)a+ϵ . (119)

We can trivially solve the x1 integral using (8)

I(a) = (−1)a
Γ(1− ϵ)Γ(2− 2a− 2ϵ)Γ(a+ ϵ)

Γ(2− a− 2ϵ)

∫
dx2dx3 δ(· · · )

(
x2 + x3

)−2+2a+2ϵ(
m2 (x2 + x3)2 − s x2x3

)a+ϵ , (120)

but now are stuck. Obviously we cannot just use (8) to solve this integral. However, if we could somehow
split the F polynomial into the terms ∝ m2 and those ∝ s, we might stand a chance. To do this, we note
the Mellin-Barnes theorem.

Theorem 51 (Mellin-Barnes split). We can split an arbitrary polynomial into two factors at the cost of
an integration. You can think of this akin to an inverse Feynman parametrisation

1

(A+B)λ
=

1

2πi

1

Γ(λ)

∫ +i∞

−i∞
dz Γ(λ+ z)Γ(−z)AzB−z−λ . (121)

We ignore the factor 1/(2πi) as it will cancel with the one from the residue theorem when we eventually
calculate the contour integral. The contour in question is chosen to separate the poles from the left and
right Γ functions. We will soon see how this works in practise.

Crucially, we are not allowed to write eg.

Γ(1 + z)Γ(−z)
Γ(z)

= −Γ(1− z) (122)

since it would confuse left and right poles.

Definition 52 (Left and right Γ functions). Γ(z) functions has infinitely many poles at z = −n. We
hence call Γ functions of the form Γ(· · · − z) right Γ functions as their poles go right towards +∞.
Similarly, Γ(· · ·+ z) are left Γ functions.

Observation 53 (Heavy-quark form factor, Pt. 2). Using (121), we write I as

I(a) = (−1)a(m2)−a−ϵΓ(1− ϵ)Γ(2− 2a− 2ϵ)

Γ(2− a− 2ϵ)

∫ i∞

−i∞
dz
(−s
m2

)z
Γ(−z)Γ(a+ ϵ+ z)∫

dx2dx3 δ(· · · )
xz2x

z
3

(x2 + x3)2+2z
.

(123)

Now we can use (8) to solve this integral, using for example δ(· · · ) = δ(1− x3)∫
dx2dx3 δ(· · · )

xz2x
z
3

(x2 + x3)2+2z
=

Γ(1 + z)2

Γ(2 + 2z)
. (124)

Therefore for I

I(a) = (−1)a(m2)−a−ϵΓ(1− ϵ)Γ(2− 2a− 2ϵ)

Γ(2− a− 2ϵ)

∫ i∞

−i∞
dz
(−s
m2

)z Γ(−z)Γ(a+ ϵ+ z)Γ(1 + z)2

Γ(2 + 2z)
. (125)
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GammaResidue[expr_ ,{z_ ,pole_ }]:= Assuming[

Element[n,Integers] && n>=0,

Residue[expr ,{z,pole}]

]/.n!-> Gamma[n+1]

Listing 11: Mathematica calculation of the residue

5.2 Solving Mellin Barnes integrals using the residue theorem

Theorem 54 (Residue theorem for MB). Assuming the MB integrand falls quickly enough, i.e. the arc
C ′ vanishes (see eg. Figure 12), we can solve a single MB integral using the residue theorem. Consider

I =

∫ i∞

−i∞
dz xz

(
nL∏
i=1

Γ(ai + z)ci

)(
nR∏
i=1

Γ(bi − z)di

)(
· · ·
)−1

︸ ︷︷ ︸
f(z)

(126)

with ci, di > 0. Then

I =

nL∑
i=1

∞∑
n=0

res
−a−n

f(z) =

nR∑
i=1

∞∑
n=0

res
b+n

f(z) . (127)

Lemma 55 (Residue formulas). We remember that if f(z) has a pole of order n at c,

res
c
f(z) =

1

(n− 1)!
lim
z→c

dn−1

dzn−1

[
(z − c)nf(z)

]
. (128)

If f(z) = g(z)h(z) and h is free of poles at c, this means

res
c
f(z) = h(c) res

c
g(z) . (129)

Finally,

res
−n

Γ(z) =
(−1)n

n!
, (130)

res
−n

Γ(z)2 =
2

(n!)2
ψ(n+ 1) , (131)

res
−n

Γ(z)3 =
(−1)n

2(n!)4

[
π2 + 9ψ(n+ 1)2 − 3ψ′(n+ 1)

]
, (132)

res
−n

ψ(z) =− 1 . (133)

Here we have also included the derivative of the Γ function, the digamma function ψ(x) = Γ′(x)/Γ(x).
Note that these rules can be implemented in Mathematica with an Assumption as shown in Listing 11.

Observation 56 (Heavy-quark form factor, Pt. 3). For simplicity we close the contour to the right as
shown in Figure 12 for a = 1. We have one residue to calculate since nR = 1

I(a) = (−1)a(m2)−a−ϵΓ(1− ϵ)Γ(2− 2a− 2ϵ)

Γ(2− a− 2ϵ)

∞∑
n=0

res
n

[(−s
m2

)z Γ(−z)Γ(a+ ϵ+ z)Γ(1 + z)2

Γ(2 + 2z)

]

= (−1)a+1(m2)−a−ϵΓ(1− ϵ)Γ(2− 2a− 2ϵ)

Γ(2− a− 2ϵ)

∞∑
n=0

( s

m2

)nΓ(1 + n)Γ(a+ n+ ϵ)

Γ(2 + 2n)
.

(134)

We can solve the remaining sum and find

I(a) = (−1)a+1(m2)−a−ϵΓ(1− ϵ)Γ(2− 2a− 2ϵ)

Γ(2− a− 2ϵ)
Γ(1 + ϵ)2F1

[
1, 1 + ϵ

3
2

;
s

4m2

]
. (135)
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C

C ′

Γ(1 + z) Γ(−z)

Γ(1 + z + ϵ)

Re(z)

Im(z)

Figure 12: The contour for the MB integral (125) for a = 1

Definition 57 (Hypergeometric function). We define the hypergeometric function as

pFq

[
a1, . . . , ap
b1, . . . , bq

; z

]
=

∞∑
n=0

(a1)n · · · (ap)n
(b1)n · · · (bq)n

zn

n!
(136)

with the Pochhammer symbol an = Γ(a+ n)/Γ(n) and the factorial n! = Γ(1 + n). For certain values of
ai and bi, these functions can be expanded in ϵ using HypExp [23].

5.3 Solving Mellin Barnes integrals using Barnes lemma

Observation 58 (Resolving singularities). Let us consider the special case of a = 0 (ignoring the fact
that there are easier ways to obtain this result)

I(0) = (m2)−ϵΓ(1− ϵ)Γ(2− 2ϵ)

Γ(2− 2ϵ)

∫ i∞

−i∞
dz
(−s
m2

)z Γ(−z)Γ(ϵ+ z)Γ(1 + z)2

Γ(2 + 2z)
. (137)

Setting ϵ→ 0 is obviously not possible since the left pole from Γ(ϵ+ z) would collide with the right pole
from Γ(−z), meaning the contour would have to cross a pole. However, if we moved the contour as shown
in Figure 13 then we can set ϵ → 0. By crossing a pole with the contour we have to explicitly add the
residue of the pole

I(0) = (m2)−ϵΓ(1− ϵ)

[∫ − 1
2+i∞

− 1
2−i∞

dz
(−s
m2

)z Γ(−z)Γ(ϵ+ z)Γ(1 + z)2

Γ(2 + 2z)
− res

0

[
· · ·
]

︸ ︷︷ ︸
−Γ(ϵ)

]
(138)

=
1

ϵ
− logm2 +

∫ − 1
2+i∞

− 1
2−i∞

dz
(−s
m2

)z Γ(−z)Γ(+z)Γ(1 + z)2

Γ(2 + 2z)
+O(ϵ) . (139)

At this stage we may expand in ϵ to whatever order we require.
Note that we can also numerically integrate (139).
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CC ′

Γ(1 + z) Γ(−z)

Γ(z + ϵ)

Re(z)

Im(z)

Figure 13: The contour for the MB integral (125) for a = 0

Observation 59 (Slightly contrived box). Consider this (slightly contrived) example

I(a) =

∫
[dk]

1[
k2
][
(k − p1)2

][
(k + p2)2

][
(k − p1 + p4)2

] , (140)

with p21 = p23 = (p1 + p2)
2 = (p1 − p3)

2 = s and p22 = p24 = 0. This example could for example occur
when calculating the boundary condition for some differential equations of Feynman integrals. There
have usually much simpler and often unphysical kinematics and are then evolved to the physics situation.
We have

I = (−s)−2−ϵΓ(1− ϵ)Γ(2 + ϵ)

∫
dx1dx2dx3dx4δ(· · · )

(
x1 + x2 + x3 + x4

)2ϵ(
x1 x2 + x3 (x2 + x4)

)2+ϵ . (141)

We split the x3 term using Mellin Barnes

I = (−s)−2−ϵΓ(1− ϵ)

∫ +i∞

−i∞
dzΓ(−z)Γ(2 + ϵ+ z)

∫
dx1dx2dx3dx4δ(· · · )

x−2−z−ϵ
1 x−2−z−ϵ

2 xz3 (x3 + x4)
z (x1 + x2 + x3 + x4)

2ϵ .

(142)

We can now obtain

I = (−s)−2−ϵΓ(1− ϵ)Γ(−ϵ)
Γ(−2ϵ)

∫ +i∞

−i∞
dz

Γ(−z)Γ(1 + z)Γ(−1− ϵ− z)2Γ(2 + ϵ+ z)

Γ(−ϵ− z)
. (143)

We could obviously solve this with the residue theorem but we have two left poles or two right poles, one
of them involving Γ(· · · − z)2. Let us try to expand in ϵ by resolving the singularities

I = (−s)−2−ϵΓ(1− ϵ)Γ(−ϵ)
Γ(−2ϵ)

(∫ − 1
2+i∞

− 1
2−i∞

dz
Γ(−z)Γ(1 + z)Γ(−1− ϵ− z)2Γ(2 + ϵ+ z)

Γ(−ϵ− z)
− res

−1−ϵ

(
· · ·
))

= 2(−s)−2−ϵ

[
1

ϵ2
− 2ζ2 +

∫ − 1
2+i∞

− 1
2−i∞

dzΓ(1 + z)Γ(2 + z)Γ(−1− z)2

−

(
2ζ3 +

∫ − 1
2+i∞

− 1
2−i∞

dzΓ(1 + z)Γ(2 + z)Γ(−1− z)2
(
ψ(−z)− 2ψ(−1− z) + ψ(2 + z)

))
ϵ

]
.

(144)
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Theorem 60 (Barnes Lemma). We have two Barnes Lemma that can be used to calculate integrals∫ +i∞

−i∞
dz Γ(λ1 + z)Γ(λ2 + z)Γ(λ3 − z)Γ(λ4 − z) =

Γ(λ13)Γ(λ14)Γ(λ23)Γ(λ24)

Γ(λ1234)
, (145)∫ +i∞

−i∞
dz

Γ(λ1 + z)Γ(λ2 + z)Γ(λ3 + z)Γ(λ4 − z)Γ(λ5 − z)

Γ(λ12345 + z)
=

Γ(λ14)Γ(λ24)Γ(λ34)Γ(λ15)Γ(λ25)Γ(λ35)

Γ(λ1245)Γ(λ1345)Γ(λ2345)
,

(146)

with λ12 = λ1 + λ2 etc. The Barnes Lemma are particularly useful when dealing with multiple MB
integrals. Further, they can be used to generate further identities. For example, taking the derivative of
(145) w.r.t. λ1∫ +i∞

−i∞
dz Γ(λ1 + z)Γ(λ2 + z)Γ(λ3 − z)Γ(λ4 − z)ψ(λ1 + z) =

Γ(λ13)Γ(λ14)Γ(λ23)Γ(λ24)

Γ(λ1234)

×
[
ψ(λ13) + ψ(λ14)− ψ(λ1234)

]
.

(147)

Observation 61 (Slightly contrived box, Pt. 2). We can now calculate the O(ϵ0) term of (144), and by
taking the derivative w.r.t. the λi

I = 2(−s)−2−ϵ

[
1

ϵ2
− ζ2 −

(
− ζ3 + γEζ2 +

∫ − 1
2+i∞

− 1
2−i∞

dzΓ(1 + z)Γ(2 + z)Γ(−1− z)2ψ(−z)

)
ϵ

]
. (148)

It is possible to write ψ(−z) as ψ(1 + z) and again use the Barnes Lemmas. Alternatively, we can note
that

Γ(−1− z)Γ(2 + z) = − 1

1 + z
Γ(−z)Γ(2 + z) = −Γ(1 + z)Γ(−z) . (149)

We are now allowed do this, since we have specified the contour explicitly and no longer need to distiguish
left and right poles. We write∫ − 1

2+i∞

− 1
2−i∞

dzΓ(1 + z)Γ(2 + z)Γ(−1− z)2ψ(−z) = −
∫ − 1

2+i∞

− 1
2−i∞

dzΓ(1 + z)2Γ(−z)Γ(−1− z)ψ(−z)

= −2ζ3 − γEζ2 .

(150)

With this

I = 2(−s)−2−ϵ

[
1

ϵ2
− ζ2 − 3ζ3ϵ

]
. (151)

Naturally, doing this manually quickly becomes annoying, the higher we want to go in ϵ.

Observation 62 (Strategies). In the example above, the integral has trivial dependence on external
kinematics. In general, this means that it can be written as I = (Q2)ℓϵf(ϵ) where f is some function
that only depends on the dimensionality of spacetime. Using the methods described in Observation 58,
we are able to expand f around ϵ = 0 and calculate the remaining integrals numerically. We will shortly
see a particularly clever way to exploit this.

If that were not the case, we have to explicitly sum the residues. Mathematica is capable of doing
this in a limited number of cases and the FORM code XSummer [30] covers many more. However, all of this
works only if there is only a single integration left. Finding a series expansion for multiple MB integrals
is highly non-trivial and subject to active research (eg. [31]).

Theorem 63 (PSLQ algorithm). Given some real (notionally transcendental) numbers ai, we can find
rational numbers ri such that

r0 a0 + r1 a1 + · · ·+ rn an = 0 (152)

using black magic, also known as number theory. An implementation of this algorithm can be found with
these lecture notes.
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Observation 64 (Using PSLQ). If we can guess a basis of transcendetal numbers such as{
ai
}
i=1,··· ,n = {1, ζ2, ζ3, ζ4, · · · , log 2, log 2ζ2, · · · } , (153)

we can numerically evaluate a MB integral to very high precision using NIntegrate as a0 and find an
analytic solution

a0 =
r1
r0
a1 +

r2
r0
a2 + · · ·+ rn

r0
an . (154)

Depending on which factors are pulled out before a0 is calculated, we might need to add γE and π to the
basis. The larger n is, the more digits we need in a0 which quickly gets expensive.

In our example, expanding (144) to ϵ4, we have for the integral part

∫ − 1
2+i∞

− 1
2−i∞

dz
(
· · ·
)
= 3.2898681336964528729448303332920503784378998024136

− 2.4041138063191885707994763230228999815299725846810 ϵ1

+ 2.1646464674222763830320073930823358055495019038375 ϵ2

− 9.9830729114759243254510727388545706244427677056444 ϵ3

− 2.8676528331332807519186620879948731784305070422237 ϵ4

(155)

calculated to 50 digits accuracy (cf. Listing 14). We can now use PSLQ with the following basis

{ ζ2︸︷︷︸
w=2

, ζ3︸︷︷︸
w=3

, ζ4︸︷︷︸
w=4

, ζ5, ζ2ζ3︸ ︷︷ ︸
w=5

, ζ6, ζ3ζ3︸ ︷︷ ︸
w=6

} (156)

to find∫ − 1
2+i∞

− 1
2−i∞

dz
(
· · ·
)
= 2ζ2 − 2ζ3ϵ

1 + 2ζ4ϵ
2 −

(
2ζ5 − 4ζ2ζ3

)
ϵ3 −

(17
2
ζ6 + 4ζ23

)
ϵ4 +O(ϵ5) . (157)

The basis has the added property that is has constant transcendentality.
In [32], Stefano Laporta calculated 1100 digits of the 4-loop QED correction to (g − 2)e and fitted a

basis with more than hundred elements.

Definition 65 (Transcendentality). For each element of the PSLQ basis a we can define a transcenden-
tality w(a). This property is multiplicative, i.e. w(a1 × a2) = w(a1) + w(a2). Some transcendentalities
can be found in Table 15. Note that even though (156) has what is called constant transcendentality (at
each order w is constant), this is not a very useful concept for QCD. However, certain symmetries such
as conformal symmetry result in constant transcendentality at the level of the matrix element.

6 Series expansions

The previous example of differential equations was fairly simple, we could guess a d log form without too
much difficulty and our alphabet was {1 + x, 1 − x}. While GPLs are fairly well studied objects, many
phonologically relevant integrals cannot be expressed in terms of GPLs. Instead they require elliptic
integrals (or worse). Even though it is sometimes still possible to evaluate these functions numerically,
there is an aspect of diminishing return. What do we gain from an analytic solution if it requires minutes
or hours to be evaluated for each phase space point? Instead, we can be pragmatic and prefer a semi-
numerical solution in terms of one or more series expansions. We will mostly follow [34] but include
further background information and a simple example.

Before we do this, we need to extend our discussion to processes with more than one kinematic
variable.
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integrand=Gamma[1-ep]*Gamma[-ep]*Gamma[-1-ep-z]^2* Gamma[-z]*Gamma [1+z]*

↪→ Gamma [2+ep+z]/Gamma [-2*ep]/Gamma[-ep-z];

integrandC = integrand /.{

z -> -1/2 + I * v

};

num = Table[

NIntegrate[

SeriesCoefficient[

integrandC ,

{ep ,0,i},

],

{v,-Infinity , Infinity},

WorkingPrecision -> 100,

PrecisionGoal -> 50,

AccuracyGoal -> 50

],

{i, 0, 4}

];

MyPSLQ[num , {

Zeta[2],

Zeta[3],

Zeta[4],

Zeta[5],Zeta [2] Zeta[3],

Zeta[6],Zeta [3] Zeta [3]

}]

Listing 14: Numerical evaluation and PSLQ

w # values
0 1 1
1 1 log 2

2 2 ζ2, log
2 2

3 3 ζ3, ζ2 log 2, log
3 2

4 5 ζ4, ζ3 log 2, ζ2 log
2 2, log4 2, Li4(

1
2 )

5 8 ζ5, ζ2ζ3, ζ4 log 2, ζ3 log
2 2, ζ2 log

3 2, log5 2, log 2Li4(
1
2 ), Li5(

1
2 )

6 13 ζ6, ζ3ζ3, ζ5 log 2, ζ2ζ3 log 2, ζ4 log
2 2, ζ3 log

3 2, ζ2 log
4 2, log6 2,

ζ2Li4(
1
2 ), log

2 2Li4(
1
2 ), log 2Li5(

1
2 ), Li6(

1
2 ) H0,0,0,0,1,1(

1
2 )

w ζi, Lii(
1
2 ), · · ·

Table 15: Some transcendental numbers up to w = 6, adapted from [33]
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Lemma 66 (Integration paths). Consider a family of integrals that depend on more than one kinematic
variable but rather a set {s}. To transport the boundary condition at some {s0} we define a line segment
γ(x) that connects our boundary condition to our target. For example,

γ(x = 0) = (γs1(x), γs2)(x), · · · ) = {s0} and γ(x = 1) = {s} . (158)

We can use (54) to write

∂I⃗

∂x
= Ax(x, ϵ)I⃗ with Ax =

∑
si∈{s}

Asi(γ(x))
∂γsi(x)

∂x
(159)

to reduce our problem to the one-dimensional case.

6.1 Reminder: ordinary differential equations

Theorem 67 (Frobenius method). Consider a p-th order differential equation of the form

DE =

p∑
j=0

cj(x)
∂j

∂xj
f(x) = 0 , (160)

with cp = 1 w.l.o.g. It is valid for the cj(x) to have poles as long as they permit a power expansion
around x = 0. We can obtain a solution of this equation by choosing an ansatz

f(x) = xr
∞∑
i=0

aix
i (161)

and comparing coefficients order-by-order in x. This gives us a linear system of equations for as many ai
as we need which we can solve iteratively.

Proof. We assume that the cj can be power expanded around x = 0 as

cj(x) = xrc
∞∑
k=0

cj,kx
k , (162)

where rc is chosen to equal for all cj . With the derivatives

∂j

∂xj
f(x) = xr

∞∑
i=0

aix
i−j Γ[1 + i+ r]

Γ[1 + i− j + r]
(163)

we now have

DE =

p∑
j=0

∞∑
k=0

∞∑
i=0

cj,kai
Γ[1 + i+ r]

Γ[1 + i− j + r]
xi−j+k+rj+r = 0 . (164)

We can collect terms by their power in x and get a system of equations for the ai

DE =

∞∑
i=0

xi−p+r+rc

p∑
k=0

i+k−p∑
j=0

ajck,i−j+k−p
Γ[1 + j + r]

Γ[1 + j − k + r]︸ ︷︷ ︸
0

. (165)

The first non-zero term in this expansion is called the incidental equation and it will fix r while keeping
a0 free. If cp,0 is not zero, this term is at i = 0

i = 0 : a0cp,0
Γ[1 + r]

Γ[1− p+ r]
= a0cp,0

p−1∏
n=0

(r − n) = 0 . (166)

It is advisable to choose the largest solution for r to perform recursion and obtain the remaining p − 1
solutions of the differential equation. Once we have a value for r we can solve the remaining system and
obtain as many aj as we desire.
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Theorem 68 (Reduction of order). After obtaining one solution f0 for the differential equation, we can
obtain another solution f1 by applying the Frobenius method to

DE′ =

p−1∑
j=0

p−1−j∑
n=0

(
p− n

1 + j

)
c−n+p(x)

∂p−n−j−1f0(x)

∂xp−n−j−1︸ ︷︷ ︸
∂j

∂xj
f ′1(x) = 0 , (167)

and integrating f1 = f0 ·
∫
dxf ′1 (which is trivial since f ′1 is a power series). Recursively applying this

algorithm will eventually produce all p solutions since DE′ is of lower order than DE.

Proof. Applying the original differential equation to f1 yields

0 =

p∑
j=0

cj(x)
∂j

∂xj

(
f0(x) ·

∫
dxf ′1(x)

)
(168a)

=

p∑
j=0

cj(x)

(
j

n

)
∂j−nf0
∂xj−n

∂n

∂xn

(∫
dxf ′1(x)

)
(168b)

=

p∑
j=0

cj(x)

(
j

n

)
∂j−nf0
∂xj−n

∂n−1f ′1
∂xn−1

. (168c)

Now we only need to re-arrange the summation to arrive at (167)

Lemma 69. We can translate a p× p system of first-order differential equations

∂f⃗

∂x
=Mf⃗ (169)

into a p-th order differential equation for the first function f1. Solving this for f1 will then allow us to
obtain the rest of f⃗ . We can gather these into a n× p matrix F s.t.

∂F

∂x
=MF . (170)

Proof. By taking derivatives of (169) it is obvious that even higher derivatives can be related back to f⃗
with different matrices M (j)

∂j f⃗

∂xj
=M (j)f⃗

=
∂

∂x

∂j−1f⃗

∂xj−1
=

∂

∂x

(
M (j−1)f⃗

)
=
∂M (j−1)

∂x
f⃗ +M (j−1) ∂f⃗

∂x
=

(
∂M (j−1)

∂x
+M (j−1)M

)
︸ ︷︷ ︸

M(j)

f⃗ .
(171)

The top rows M
(j)
1i of the new matrices define yet another matrix. Depending on how many derivatives

we include in this we can obtain two different version: M̃ , a (p×p)-matrix, and M̄ , a ((p+1)×p)-matrix.
Assuming it is invertible, M̃ can be used to reconstruct all integrals from the first one as

f⃗ = M̃−1

(
f1,

∂f1
∂x

,
∂2f1
∂2x

, · · · , ∂
p−1f1
∂p−1x

)
. (172)

To actually obtain f1, we want a p-th order differential equation for f1. Note that since M̃ is assumed
to be invertible, M̄ has a single element c⃗ in its kernel, i.e. c⃗M̄ = 0⃗. Right-multiplying with f⃗ allows us
to write

0 =

p∑
j=0

cjM̃j,if⃗ =

p∑
j=0

cj
∂jf1
∂xj

(173)
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We can write (172) using the Wronskian matrix W

W =


f1 · · · fp
∂xf1 · · · ∂xfp
...

. . .
...

∂p−1
x f1 · · · ∂p−1

x fp

 , (174)

as F = M̃−1W .

Lemma 70 (Inhomogenous differential equations). To obtain the general solution of an inhomogeneous

differential equation ∂xf⃗ −Mf⃗ = I⃗, we need to add the general solution F of the homogeneous equation
∂xF −MF = 0 to a particular solution of the inhomogeneous one. This is done by

fi =
∑
j

[
F ·

(∫
dxF−1 · 1

p

(
I⃗, · · · I⃗

)
+ diag

(
c1, · · · , cp

))]
ij

. (175)

The ci are the integration constants that need to be fixed by the p boundary conditions. Since we are
only considering series expansions this integrals is very straightforward.

Proof. Let us define the p × p matrices B = (I⃗, · · · , I⃗)/p and E = diag(c1, · · · , cp). Consider now the
derivative of the bracket Gij = [· · · ]ij

∂xG = ∂xF ·
(∫

dxF−1 ·B + E
)
+B . (176)

Since F is a solution of the homogeneous differential equation, i.e. ∂xF = MF , we can see that G is a
solution of

∂xG =M · F ·
(∫

dxF−1 ·B + E
)
+B =M ·G+B . (177)

The factor of 1/p in B arises from the sum to ensure that
∑

j Bij = Ii.

Observation 71 (Getting back to Feynman integrals). Since we can rescale integrals by an arbitrary
power in ϵ, we can write w.l.o.g. M = M0 +M1ϵ +M2ϵ

2 + · · · . By expanding the differential equation
order-by-order in ϵ, we have

∂I⃗k
∂x

−M0I⃗k =

k−1∑
j=0

Mk−j I⃗j︸ ︷︷ ︸
I⃗k

. (178)

When working on the k-th order, we will assume that all previous orders are known so that the inhomo-
geneity of our differential equation I⃗k is fully known.

By choosing a clever ordering of the integral, i.e. one that makesM as block-triangular as possible we
can simplify the differential equations we need to solve considerably. It is fairly obvious that we should
solve all subsectors of any given integral firsts since derivatives never evaluate to integrals in higher
sectors.

Definition 72 (Coupled integrals). The matrix M0 can be interpreted as describing a graph G whose
nodes are master integrals and whose edges corresponds to dependencies between integrals. If (M0)ij ̸= 0,
there is an edge from i → j. We consider those integrals coupled that belong to the same strongly
connected component of the graph, i.e. those sub-graphs where a path from each node to each other node
exists.

Lemma 73 (Integration sequence). An optimal integration sequence is obtained by considering the
condensation G̃ of the graph G, i.e. replacing each strongly connected sub-graph with a single node. We
then sort the nodes topologically to ensure that those integrals with the fewest dependencies are solved
first.
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I2111

I1111

I2211I1110

Figure 16: The connection graph corresponding to (180b). When solving this system, we begin with the
red integral I1110 before simultaneously solving the blue integrals.

Example 74 (Three-loop sunset). Consider the three-loop massive sunset

Iαβγδ = p2 =

∫
[dk1][dk2][dk3][

k21 −m2
]α[

k22 −m2
]β[

k23 −m2
]γ[

(k1 + k2 + k3 + p)2 −m2
]δ ,
(179)

with p2 = s ̸= 0 and m = 1. It is fairly easy to find the differential equation in s

∂

∂s


I2211
I2111
I1111
I1110

 =
(
M0 + ϵM1

)
I2211
I2111
I1111
I1110

 , (180a)

with matrices

M0 =


18

(s−16)(s−4) − 4(s+20)
(s−4)(s−16)s

36
(s−4)(s−16)s − 2

(s−16)s

− 3
s−4

s+12
(s−4)s − 6

(s−4)s 0

0 − 4
s

2
s 0

0 0 0 0

 , (180b)

M1 =


−s2−16s−64
(s−16)(s−4)s

14(s+20)
(s−4)(s−16)s − 174

(s−4)(s−16)s − 6
(16−s)s

0 −2s−16
(s−4)s

17
(s−4)s 0

0 0 − 3
s 0

0 0 0 0

 . (180c)

The graph corresponding to M0 is shown in Figure 16

6.2 A full worked example

We can now consider an actual example, start to finish. We have already derived the matrix for the heavy
quark bubble M ≡ My in (57). While we did guess a canonical form in Example 34 we will pretend to
not know this and instead consider the pre-canonical basis.

Example 75 (Boundary condition at y = 0). We take our boundary condition at y = 0, i.e. s = 0. Note
that this can be dangerous as the differential equation matrices have a singularity at y = 0. However,
it turns out that the integrals are well-behaved around this region. Otherwise, we would have to do an
asymptotic expansion around y = 0.

The first integral, J1 ∼ I001, is trivial

J1 = m−2+2ϵϵ

∫
[dk1]

1[
(k1 − q)2 −m2

] = −ϵΓ(1− ϵ)Γ(−1 + ϵ) (181a)

= −1− ϵ− (1 + ζ2)ϵ
2 − (1 + ζ2)ϵ

3 −
(
1 + ζ2 +

7

4
ζ4

)
ϵ4 +O(ϵ5) . (181b)
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The second one, J2 ∼ I011, is slightly more complicated. We begin by deriving the U and F polynomials
as we have learned in the previous section

U = x1 + x2 ,

F = s x1x2 +m2Ux1 +m2Ux2 = s x1x2 +m2(x1 + x2)
2 → m2(x1 + x2)

2 .
(182)

And hence,

J2(y = 0) = m2ϵϵI011 = −m2ϵϵΓ(1− ϵ)Γ(2− d/2)

∫ ∞

0

dx1dx2δ(· · · )
U2−d

(F − i0+)2−d/2

= −Γ(1 + ϵ)Γ(1− ϵ)

∫ ∞

0

dx1dx2
δ(1− x1)

(x1 + x2)2
= −Γ(1 + ϵ)Γ(1− ϵ) (183a)

= −1− ζ2ϵ
2 − 7

4
ζ4ϵ

4 +O(ϵ5) . (183b)

Example 76 (Expansion around y = 0). The differential equation we need to solve is only for J2 =
J2,0 + J2,1ϵ+ J2,2ϵ

2 + · · ·

∂yJ2,0 =M0,21J1,0︸ ︷︷ ︸
I0

+M0,22J2,0 , (184a)

∂yJ2,k =M1,21J1,k−1 +M1,22J2,k−1︸ ︷︷ ︸
Ik

+M0,22J2,k . (184b)

The homogeneous solution Jh of ∂yJh = M0,22Jh does not depend on the order in ϵ. Following the
Frobenius method, we have

Jh =

∞∑
i=0

yi+rci (185a)

∂xJh =

∞∑
i=−1

(i+ r + 1)yi+rci+1 (185b)

=
1

2y(y − 1)

∞∑
i=0

yi+rci = −1

2

∞∑
j=−1

yj
∞∑
i=0

yi+rci . (185c)

The first term of this equation at yr−1,

yr−1
(c0
2

+ rc0

)
= 0 , (186)

requires r = −1/2. In general, this would be numerically solved order-by-order. Here, we can write down
a closed form solution as

cn = − (2n)!

21+2n(1 + n)(n!)2
c0 . (187)

Hence, our homogenous solution is

Jh = c0y
−1/2 − 1

2
c0y

1/2 − 1

8
c0y

3/2 − 1

16
c0y

5/2 − 5

128
c0y

7/2 − 7

256
c0y

9/2 +O(y11/2) . (188)

Next, we need to derive particular solutions order-by-order.

1. k = 0: The inhomogeneity is given by J1,0 = −1

I0 =
1

2y(y − 1)
(189a)
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Figure 17: The power-law expansion compared with the correct result for ϵ1 and ϵ2. The radius of
convergence R = 1 is indicated with the arrows.

We can now find

Jp,0 = Jh

∫
dy

I0
Jh

=
Jh
c0

∫
dy

(
− y−1/2

2
− 3y1/2

4
− 15y3/2

16
− 35y5/2

32
− 315y7/2

256
+O(y9/2)

)
.

(189b)

Since
∫
yn = y1+n/(1 + n),

Jp,0 = −1 . (189c)

Our boundary condition requires J2,0(y = 0) = −1 which means that c0 = 0 and J2,0 = Jp,0 = −1.

2. k = 1: We now have

I1 = −1− y − y2 − y3 − y4 − y5 +O(y6) (190a)

Jp,1 = −2y

3
− 4y2

15
− 16y3

105
− 32y4

315
− 256y5

3465
+O(y6) . (190b)

Our boundary condition requires J2,1(y = 0) = 0 which means that c0 = 0 and J2,1 = Jp,1.

3. k = 2:

I2 = − ζ2
2y

− ζ2
2

+ y
(
− ζ2

2
− 2

3

)
+ y2

(
− ζ2

2
− 14

15

)
+ y3

(
− ζ2

2
− 38

35

)
+O(y4) , (191a)

Jp,2 = −ζ2 −
4y2

15
− 8y3

35
− 176y4

945
− 320y5

2079
+O(y6) . (191b)

We can continue this process until we our preferred order in ϵ.
We can plot the resulting function (expanded up to O(y15) for better convergence) with the exact

result we have obtained in Example 34. The resulting ratios are shown in Figure 17. Note that the
expansion becomes very bad around y = ±1. This is due its finite radius of convergence R = 1, as we
will see next.

Theorem 77 (Fuchs’s theorem (applied to Feynman integrals)). When expanded around x = 0, the

general solution of the homogenous equation ∂xf⃗ −Mf⃗ = 0 has a radius of convergence

R = min
{
|xi| : where xi are the poles of M

}
(192)

as these specify the radii of convergence of a series expansion of M .
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Lemma 78 (Matching of power series). Consider a function f(x) with a power series with known
coefficients ai around x0 and a radius of convergence R0

f(x) = f0(x) = (x− x0)
r0

∞∑
i=0

ai(x− x0)
i . (193)

Consider further an expansion around x1 with yet unknown coefficients bi and a radius R1

f(x) = f1(x) = (x− x1)
r1

∞∑
i=0

bi(x− x1)
i . (194)

If there is a point x such that |x− x0| < R0 and |x− x1| < R1, we can evaluate f0(x) and use this as the
boundary condition for f1 to determine the bi. We now have an expression for f that covers a larger area

f1,2 : {x : |x− x0| < R0} ∪ {x : |x− x1| < R1} → C

x =

{
f0(x) |x− x0| < |x− x1|
f1(x) otherwise

.
(195)

Example 79 (Expanding around y = −1/2). By setting y = −1/2 − y′/2, we can expand around
y = −1/2 (y′ = 0) to extend our region of good convergence. This changes the differential equation

M ′ = − 1

3 + 4y′ + y′2

(
0 0

−1 + ϵ 1 + ϵ(1 + y′)

)
, (196)

the homogeneous solution

Jh′ = c′0 −
c′0
3
y′ +

5c′0
18

y′2 − 13c′0
54

y′3 +
139c′0
648

y′4 − 379c′0
1944

y′5 +O(y′6) , (197)

and the particular solutions

Jp′,0 = 1 , (198)

Jp′,1 =
y′

3
− y′2

9
+

2y′3

27
− 5y′4

81
+

67y′5

1215
+O(y′6) . (199)

The general solution Jh′ + Jp′,1 has one free parameter, c′0 that can be fixed through the matching at eg.
y = −1/6 (y′ = −2/3)

J2,1

(
y = −1

6

)
=

255388946

2447679465
= 0.104339 , (200)

⇒ c′0 =
185606208569944

660431033911495
= 0.281038 . (201)

The new result is shown in Figure 18. Note that M ′ has poles at y′ = {−1,−3} (y = {1, 0}) indicating
a radius of convergence of R′ = 1.

Example 80 (Expanding around y = −1). We can repeat this one last time and expand around y =
−1− y′′ = −1 to cover the whole range −2 < y < 1. We perform the matching y = −5/6 with the result
is shown in Figure 19.

Observation 81. Note that we could have jumped from y = 0 to y = −1 directly without expanding
around y = −1/2 first. However, as shown in Figure 19, the resulting precision is significantly reduced
as the y = 0 expansion is less precise at the matching point y = −1/2. It is therefore advisible to use
smaller steps or techniques that improve convergence such as Möbius transforms (ensure that the nearest
pair of singularities are an equal distance from the origin) or Padé approximants (rational functions of
fixed degree that can be derived from the Taylor expansion and that usually perform better) [34].
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Figure 18: The stiched result expanded around y = 0 and y = −1/2 (indicated by the dots) and the
area in which each result is to be used (indicated by the arrows).
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Figure 19: The stiched result to cover the full domain y = [−2, 0], expanded with three nodes (left
panel) or two nodes (right panel).
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6.3 Auxiliary mass flow

As we have seen it is possible to solve arbitrarily complicated Feynman integrals using series expansions
once we have the differential equation matrix and the boundary conditions. Laporta’s algorithm allows
us to, at least in principle, find the differential equation matrix for any set of integrals. However, the
boundary condition still need to be computed manually. While we could use a tool like pySecDec [35,
36, 26, 37] to evaluate these numerical using sector decomposition, this can be numerically challenging.
Instead, we can use the method of region in a particularly clever way [38, 39].

Observation 82 (Expansion in large masses). We saw in Example 35 that expanding in a heavy mass
results in two regions. In the hard region h all other masses and kinematic invariants are set to zero. In
the soft region s the massive propagator is replace with 1/M2. Either way, the resulting integral becomes
a lot simpler.

Theorem 83 (Auxilary mass). Consider an integral where a large auxiliary mass η is added to each
propagator, i.e.

I =

∫
[dk1] · · · [dkℓ]
D1D2 · · · Dp

→ Iη =

∫
[dk1] · · · [dkℓ]

(D1 − η)(D2 − η) · · · (Dp − η)
, (202)

with Di = (ki+pi)
2−m2

i . For η ≫ m2
i , sij this integral can be considered known and used as a boundary

condition.

Proof. Applying the method of regions means that we either have all loop momenta hard, i.e. hℓ, or at
least one loop momentum soft, i.e. sXℓ−1.

� For hℓ the propagators become Di = k2i − η, i.e. single-scale vacuum integrals. These are known
up to ℓ = 5 and it is in fact possible to derive them iteratively [40].

� For sXℓ−1 we assume w.l.o.g. that k1 is the soft momentum. This means all propagators of the
form Di = (k1 + pi)

2 −m2
i − η just become Di → η. In propagators that have other loop momenta,

we can safely neglect k1. This means our k1 integration is trivial and we are left with an (ℓ−1)-loop
integral.

By recursively applying this algorithm we can solve any Iη.

Theorem 84 (Auxilary mass flow). We can use IBP reduction to derive a differential equation for the

system of I⃗η

∂

∂η
I⃗η =Mη I⃗η , (203)

and use the boundary condition η → −i∞ to obtain our integrals at η = i0− through multiple series
expansions at

� η → −i∞: We fix our boundary conditions at η → i∞ and perform a power-log expansion

I⃗ (∞)
η = ηa⃗+b⃗ϵ

∞∑
i=0

c⃗i(ϵ)η
−i . (204)

The start of the expansion a⃗, order of the logarithms b⃗, and the first term c⃗0 are wholly determined
by the boundary condition while the remaining c⃗i(ϵ) are fixed by the differential equation.

� η = η0: We match and expand a Taylor series around η0 which is chosen such that |η0| > |ηs| for
all singularities of the differential equation matrix ηs ̸= 0.

� η = ηi: We match and expand Taylor series with overlapping radii of convergence.

� η = ηN : The last value we expand around is chosen such that |ηN | < |ηs|. Here the expansion takes
the form

I⃗ (N)
η =

∞∑
i=0

c⃗i(ϵ)η
i

︸ ︷︷ ︸
homogeneous

+ ηa⃗+b⃗ϵ
∞∑
i=0

d⃗i(ϵ)η
i

︸ ︷︷ ︸
subtopologies

. (205)
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� η = i0−: To go from our last expansion to zero, we have

I⃗ = c⃗0(ϵ) , (206)

since in dimensional regularisation

lim
η→i0−

ηa+bϵ = 0 for b ̸= 0 . (207)

Observation 85. Note that we are expanding around η = −i∞ rather than just η = ∞. Singularities of
the original integral lie on the real axis in η and therefore I⃗η is finite as long as ℑη ̸= 0. Hence, choosing
η = −i∞ may complicate matters as we have to work with complex masses, it greatly simplifies the
running η → i0−.

Lemma 86 (Step size). We already know that the first matching point, η0, needs to be bigger than
the largest singularity while the last, ηN needs to be smaller than the smallest non-zero singularity. In
practice, we choose a factor R and then define

η0 = −iRmax{|ηs| : ηs ̸= ∞ singularities of Mη} , (208a)

ηN = − i

R
min{|ηs| : ηs ̸= 0 singularities of Mη} . (208b)

Next, we choose the intermediary values ηi such that

ηi+1

ηi
=
R− 1

R
for 0 ≤ i < N . (208c)

These equations also define the number N of steps we are taking.

Example 87 (Massless bubble). Consider the integral family

Iαβ =

∫
[dk][

k2
]α[

(k − p)2
]β , (209)

with p2 = s ≡ 1. This family has a single master integral I11. Adding the auxiliary mass modifies this to

Iη,αβ =

∫
[dk][

k2 − η
]α[

(k − p)2 − η
]β , (210)

which now has two master integrals Iη,10 and Iη,11. The differential equation matrix for I⃗η is, as in (51)

Mη =

(
1−ϵ
η 0

− 2−2ϵ
η(4η−1)

2(1−2ϵ)
4η−1

)
. (211)

We can hence expect singularities at η = 0, η = 1/4, η = ∞
The first boundary condition is just a tadpole

Iη,10 =

∫
[dk]

k2 − η
= −η1−ϵΓ(1− ϵ)Γ(−1 + ϵ) . (212)

For the second, we expand in η ∼ ∞. The soft region s vanishes as both propagators just become 1/η
while the hard region h is

Iη,11 ∼
∫

[dk][
k2 − η

]2 = η−ϵΓ(1− ϵ)Γ(ϵ) +O
(1
η

)
. (213)

Next, we need to choose our expansion points. The poles of Mη are at η = 0 and η = 1/4. Using R = 2
in (208) we have η0 = −i/2, η1 = −i/4, and η2 = ηN = −i/2.
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� η → −i∞: We have a⃗ = (1, 0) and b⃗ = (−1,−1). We can now solve for c⃗ and find

c⃗0 =

(
−Γ(1− ϵ)Γ(−1 + ϵ)

Γ(1− ϵ)Γ(ϵ)

)
, (214a)

c⃗1 =
(
0,

1

6
+O(ϵ2)

)T
, (214b)

c⃗2 =
(
0,

1

60
+

1

60
ϵ+O(ϵ2)

)T
, (214c)

c⃗3 =
(
0,

1

420
+

1

280
ϵ+O(ϵ2)

)T
. (214d)

Evaluating this for the next point η = −i/2 gives for the second integral

I
(∞)
η,11(η = −i/2) =

1

ϵ
+ (0.632066 + 1.88709i) + (0.0555556 + 1.18759i)ϵ+O(ϵ2) . (215)

� η = −i/2: We perform a normal Taylor expansion with the (η + i/2)0 term given by (215)

I
(0)
η,11 =

(1
ϵ
+ (0.632066 + 1.88709i) + (0.0555556 + 1.18759i)ϵ

)
+ (η + i/2)

(
(0.5714 − 1.77538i) + (3.68432 − 0.0178779i)ϵ

)
+ (η + i/2)2

(
− (1.39587 + 0.983636i)− (0.388233 + 4.17847i)ϵ

)
+O

(
(η + i/2)3, ϵ2

)
(216)

Evaluating this at η = −i/4 we have

I
(0)
η,11(−i/4) =

1

ϵ
+ (1.18638 + 2.13174i) + (0.0584251 + 2.50302i)ϵ+O(ϵ2) . (217)

� η = −i/4: We perform a normal Taylor expansion with the (η + i/4)0 term given by (217)

I
(1)
η,11 =

(1
ϵ
+ (1.18638 + 2.13174i) + (0.0584251 + 2.50302i)ϵ

)
+ (η + i/4)

(
(1.63896 − 2.76086i) + (7.62454 + 0.251576i)ϵ

)
+ (η + i/4)2

(
− (2.56095 + 4.19991i) + (3.18517 − 14.0005i)ϵ

)
+O

(
(η + i/4)3, ϵ2

)
(218)

Evaluating this at η = −i/8 we have

I
(1)
η,11(−i/8) =

1

ϵ
+ (1.57145 + 2.42639i)− (0.0708639 − 3.73778i)ϵ+O(ϵ2) . (219)

� η = i0−: We begin with a power expansion for the homogeneous equation

∂I
(N)
η,11,h

∂η
=

2(1− 2ϵ)

4η − 1
I
(N),h
η,11 , (220)

and find

I
(N)
η,11,h =

(c2,0,−1

ϵ
+ c2,0,0 + ϵc2,0,1 +O(ϵ2)

)
+ η
(
− 2c2,0,−1

ϵ
+ 4c1,0,−1 − 2c2,0,0 + ϵ(4c2,0,0 − 2c2,0,1 +O(ϵ2))

)
+ η2

(
− 2c2,0,−1

ϵ
− 2c2,0,0 + ϵ(8c2,0,−1 − 2c2,0,1 +O(ϵ2))

)
+O(η3) .

(221)
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Figure 20: The two-loop pentabox of [39] with all internal and external masses vanishing. The red line
is a good candidate for the auxiliary mass.

Next, build the full solution with a2 = 1 and b2 = −1, matched at η = −i/8 with (219) which fixes
the remaining free coefficients

I
(N)
η,11 =

(1
ϵ
+ (2 + 3.14159i)− (0.934802 − 6.28319i)ϵ

)
+ η
(
− 2

ϵ
− (0 + 6.28319i) + 9.8696ϵ

)
+ η2

(
− 2

ϵ
− (4 + 6.28319i) + (9.8696 − 12.5664i)ϵ

)
+ η1−ϵ

(2
ϵ
+ 2.+ 5.28987ϵ

)
+ η2−ϵ

(2
ϵ
+ 3.+ 6.78987ϵ

)
+O

(
η3, ϵ2

)
.

(222)

We can now read of the final answer for I11

I11 =
1

ϵ
+ (2 + 3.14159i)− (0.934802 − 6.28319i)ϵ+O(ϵ2) . (223)

Observation 88. Note how we started with one master integral I11 and had to actually calculate two,
Iη,10 and Iη,11. In this example, the integrals were simple enough so that this was not a problem but
in a real-life example this might not be the case. Consider for example the diagram in Figure 20 [39].
The original topology contained 108 master integrals. Adding an η to every propagator increases this to
476 integrals. Instead we could add η only to some propagator(s). If we chose the highlighted line, we
only have 176 masters which greatly speeds up the computation. Of course, in cases where we have an
internal massive line such as an electoweak boson or top quark, we should use its mass as the auxiliary
mass.
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