Practical guide to
 analytic loop integration

 Exercise Sheet 3

 Exercise Sheet 3}

Easter Term 2022
Dr Y. Ulrich
https://yannickulrich.gitlab.io/loop-integration

Exercise 1: top quark decay
Consider the following integral that appears in the two-loop calculation of the top decay

The dashed line corresponds to light b quark and the solid line to the heavy t quark.
a) Find the momentum regions that contribute to this process.
b) Show that the hard region does in fact equal the same calculation with massless b quarks, i.e. $m=0$.
c) The result for $m=0$ can be found in the literature as

$$
\begin{align*}
s & \frac{\left(M^{2}\right)^{-2 \epsilon}}{M^{2}-s}\left[\frac{1}{\epsilon^{2}}+\frac{1}{\epsilon} \frac{1+y}{y} H_{1}(y)+4\right. \tag{2}\\
& \left.+\frac{2(1+y)}{y}\left(H_{1}(y)+H_{1,1}(y)\right)+\frac{2}{y} \frac{1+y}{1-y}\left(H_{0,1}(y)-y \zeta_{2}\right)\right] .
\end{align*}
$$

Show by explicit calculation of the remaining regions that the complete integral has no $1 / \epsilon^{2}$ pole but a $\log \left(m^{2} / M^{2}\right)$.

Exercise 2: Soft approximation
Consider the following diagram

with the energy of the photon soft compared to $s=Q^{2}$ and $p_{1}^{2}=p_{2}^{2}=m^{2} \ll s$. This can be phrased in a Lorentz invariant way by requiring that all invariants

$$
\begin{equation*}
\sigma_{i 3}=2 p_{i} \cdot p_{3} \sim m \sim \lambda \tag{4}
\end{equation*}
$$

a) Use the method of regions in the parametric representation to find all six regions that contribute to this integral.
b) Consider the region $\vec{r}^{(1)}=(0,-1,-1,1)$, i.e. $\mathcal{P}_{1} \sim 1, \mathcal{P}_{2} \sim \lambda^{-1}, \mathcal{P}_{3} \sim \lambda^{-1}, \mathcal{P}_{4} \sim \lambda$. Show that this integral is not finite in dimensional regularisation.

Such behaviour is not uncommon and usually points to a broken symmetry eg. in SCET. It is usually addressed by using analytic regularisation, i.e.

$$
\begin{array}{r}
\int[\mathrm{d} k] \frac{1}{\left[k^{2}\right]\left[\left(k-p_{1}\right)^{2}-m^{2}\right]\left[\left(k-p_{1}+p_{3}\right)^{2}-m^{2}\right]\left[\left(k+p_{2}\right)^{2}-m^{2}\right]} \\
\rightarrow\left(-\nu^{2}\right)^{\eta} \int[\mathrm{d} k] \frac{1}{\left[k^{2}\right]\left[\left(k-p_{1}\right)^{2}-m^{2}\right]\left[\left(k-p_{1}+p_{3}\right)^{2}-m^{2}\right]^{1+\eta}\left[\left(k+p_{2}\right)^{2}-m^{2}\right]} . \tag{5}
\end{array}
$$

We have introduced an additional regulator η that we will take to zero as soon as we have added all regions. Crucially, $\eta \rightarrow 0$ needs to be done before $\epsilon \rightarrow 0$.
c) Calculate the integral, up to $\mathcal{O}\left(\lambda^{0}\right)$. Add all regions and set $\eta \rightarrow 0$ and finally $\epsilon \rightarrow 0$.

