Practical guide to
 analytic loop integration

 Exercise Sheet 2

 Exercise Sheet 2}

Easter Term 2022
Dr Y. Ulrich
https://yannickulrich.gitlab.io/loop-integration

Exercise 1: Sunset diagram Consider the following integral
with $p^{2}=m^{2} \neq 0$ and an arbitrary numerator \mathcal{N}.
a) Find a complete family. We know that it will need $\ell(1+\ell+2 \rho) / 2=5$ propagators.
b) Identify the sectors in which all integrals vanish.
c) Consider the IBP generated through $\partial_{k_{1}^{\mu}}\left(k_{1}^{\mu} I\right)$. Use it to show that

$$
\begin{equation*}
\int\left[\mathrm{d} k_{1}\right]\left[\mathrm{d} k_{2}\right] \frac{k_{2} \cdot p}{\left[k_{1}^{2}\right]\left[k_{2}^{2}\right]\left[\left(k_{1}-k_{2}-p\right)^{2}-m^{2}\right]^{2}}=\frac{3-d}{2} \int\left[\mathrm{~d} k_{1}\right]\left[\mathrm{d} k_{2}\right] \frac{1}{\left[k_{1}^{2}\right]\left[k_{2}^{2}\right]\left[\left(k_{1}-k_{2}-p\right)^{2}-m^{2}\right]} \tag{2}
\end{equation*}
$$

d) Now find all six seed identities as a function of a_{1}, \ldots, a_{5}.
e) Implement Laporta's algorithm to solve the system up to $r=3$ and $s=1$ for sector 7 and its subsectors.

