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Abstract

Loop integration is a vital part of any higher order calculation. However, practical tools to actually
compute these integrals are rarely covered in lectures. In this block course, I will cover some advanced
methods that have been used in a number of multi-scale multi-loop calculations.

After introducing the problem, I will discuss integration-by-parts reduction to reduce the number
of integrals, the method of regions to reduce the number of scales and finally the Mellin Barnes
technique to actually solve the integrals.

The course will be composed of lectures introducing the techniques and practical, hands-on ex-
ample at the two-loop level.

For further reading, see [1, 2, 3, 4, 5, 6].
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1 Basics of loop integration

The calculation of Feynman integrals is a core problem in the calculation of higher order problems. Over
the last decades, many techniques have been developed, both analytic and numeric. Many resources are
available for commonly used techniques such as differential equations or sector decomposition. In this
course, we will cover some more niche techniques that are useful for specialist application.

Definition 1 (Scalar loop integral). We will almost exclusively consider integrals of form∫
ddk1
(2π)d

· · · ddkℓ
(2π)d

1

Pα1
1 · · · Pαt

t

, (1)

with ℓ loop momenta ki. The powers αi of the propagators Pi may be positive, negative, or zero. The
propagators themselves are either linear or quadratic in the loop momenta. For example,

Pi =

{
(ki + pi)

2 −m2
i + i0+

2ki · pi −m2
i + i0+

, (2)

where i0+ denotes the small imaginary part of the Feynman prescription required to ensure causality.

Definition 2 (Loop measure). When solving loop integrals, we often encounter series expansions of the
Γ function. This means that our intermediary results for the virtual matrix elements will contain terms
proportional to the Euler constant γE = −Γ(1)′ = 0.5772.... This is completely unphysical and will cancel
once the virtual and real corrections are combined. It is, however, convenient to already drop these at
the integral level. Hence, we re-define the loop measure as

[dk] = Γ(1− ϵ)µ2ϵ ddk

iπd/2
. (3)

In what follows, I will often set µ = 1 unless I want to make a specific point. Other definitions are used
in the literature. If you are reusing results by other people make sure to check the conventions they have
used.

Theorem 3 (Tadpole integral). For ℓ = t = 1 we have the tadpole integral∫
[dk]

1[
k2 −m2 + i0+

]n = (−1)n
(
m2
)2−n−ϵΓ(1− ϵ)Γ(n− 2 + ϵ)

Γ(n)
(4)

Proof. Our integrand has poles at k0 = ±
√
k⃗2 +m2 ∓ i0+ as shown in Figure 1. Since the poles are in

the top-left and lower-right quadrant, the integral over the drawn contour vanishes. Since the integrand
falls quickly enough, the integrals over the real and imaginary axis are equal up to a sign

0 =

∮
dk0 =

(∫ ∞

−∞
+

∫ i∞

−i∞
+arcs

)
. (5)

Substituting k0 → ik0 so that k2 = −k20 − k⃗2 = −k2E where kE is a Euclidean momentum. This process
in known as a Wick rotation, transforming our expression to∫

[dk]
1[

k2 −m2 + i0+
]n =

Γ(1− ϵ)

πd/2
(−1)n

∫
ddkE

1[
k2E +m2 + i0+

]n
=

Γ(1− ϵ)

πd/2
(−1)n

∫
dΩd

∫ ∞

0

dkE
kd−1
E[

k2E +m2
]n . (6)

At this point we can set i0+ = 0 since the denominator is always strictly bigger than zero. Using that
the d-dimensional sphere has a volume of ∫

dΩd =
2πd/2

Γ(d2 )
(7)
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Re(k0)

Im(k0)

+
√
k⃗2 −m2 − i0+

−
√
k⃗2 −m2 + i0+

Figure 1: The poles of the k0 intergation and the contour of (5)

and the basic integral (which is nothing but the definition of the B function)∫ ∞

0

dx xα(a+ bx)β =
Γ(1 + α)Γ(−1− α− β)

Γ(−β)
a1+α+β

b1+α
, (8)

we find ∫
[dk]

1[
k2 −m2 + i0+

]n =
Γ(1− ϵ)

πd/2
(−1)n

2πd/2

Γ(d2 )

(
m2
)d/2−nΓ(

d
2 )Γ(n− d

2 )

2Γ(n)

= (−1)n
(
m2
)2−n−ϵΓ(1− ϵ)Γ(n− 2 + ϵ)

Γ(n)
.

(9)

To solve any loop integral with more propagators than loops, we could either solve the loops one by
one or all in one go. Both methods are equivalent though difficult to relate in practical examples. We
will be focusing on the latter case as the former can be viewed as a sub-class.

Lemma 4 (Feynman parametrisation & Cheng-Wu theorem [7]). We write

1

Pα1
1 · · · Pαt

t

=
Γ(r)∏
j Γ(αj)

∫ ∞

0

t∏
j=1

dxj x
αj−1
j δ

(∑
i∈ν

xi − 1

)
1(

P1x1 + ...+ Ptxt

)r . (10)

where r =
∑

j αj and ν a non-empty subset of {1, ..., t} (Cheng-Wu theorem).

Note that most books on QFT will assume ν = {1, ..., t}, reducing the integration region to [0, 1] ×
[1, 1− x1]× .... However, for analytic calculations we have found that having just one element, say i = 1,
in ν = {1} is a better choice, setting one x1 = 1 and keeping the integration bounds at [0,∞]t−1.

Theorem 5. We can calculate a general ℓ-loop integral in terms of graph polynomials or Symanzik
polynomials

I = (−1)rΓ(1− ϵ)ℓ
Γ(r − ℓd/2)∏

j Γ(αj)

∫ ∞

0

t∏
j=1

dxj x
αj−1
j δ

(
xi − 1

) Ur−(ℓ+1)d/2

(F − i0+)r−ℓd/2︸ ︷︷ ︸
G

. (11)
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U and F are the graph polynomials or Symanzik polynomials that can be computed analytically (see (17)),
algorithmically (see Observation 6), or graph-theoretically (see Observation 7).

Further, U > 0 so its prescription does not matter. F , however, can be both positive and negative.
It is hence important to properly include its prescription as F → F − i0+.

Proof. We use (10) to write the dominator as

D = P1x1 + ...+ Ptxt = kT ·M(xi) · k − 2Q(xi, qj)
T k + J(xi, sjk) + i0+ , (12)

with a ℓ×ℓ matrixM , ℓ-vectors k = (k1, ..., kℓ) and Q, depending on the Feynman parameters xi, external
momenta qj and invariants sjk = 2qj · qk. By shifting k → k +M−1Q we cancel the linear term so that
after diagonalising M (with eigenvalues λi) we have

D = kT · diag(λi) · k −∆ with ∆ = QTM−1Q− J − i0+ . (13)

∆ has a −i0+ prescription since we started with J + i0+ in (12). Next, we rescale ki → λ
−1/2
i ki to

factorise the loop integrations

I =
Γ(r)∏
j Γ(αj)

∫ ∞

0

t∏
j=1

dxj x
αj−1
j δ(· · · )

∫
λ
−d/2
1 [dk1] · · ·λ−d/2

ℓ [dkℓ]
1[

kT · k −∆
]r︸ ︷︷ ︸

I′

(14)

We can extend (4) to cover this case

I ′ =

(
Γ(1− ϵ)

πd/2

)ℓ

(−1)r
∫

ddk1,E · · · ddkℓ,E
1[

k21,E + · · ·+ k2ℓ,E +∆
]r

= (−1)r∆ℓd/2−r Γ(1− ϵ)ℓΓ(r − ℓd/2)

Γ(r)
.

(15)

With this, we can write

I =
Γ(r)∏
j Γ(αj)

∫ ∞

0

t∏
j=1

dxj x
αj−1
j λ

−d/2
i δ(· · · )(−1)r∆−r+ℓd/2Γ(1− ϵ)ℓΓ(r − ℓd/2)

Γ(r)
. (16)

Here we have used (4) to find the general Feynman-parametrised form of the ℓ-loop integral. We now
identify

U = detM =
∏
j

λj , F = detM ×∆ , (17)

to arrive at (11).

Observation 6 (Algorithmic calculation of U and F). We can calculate U and F directly without having
to manually find the eigenvalues λi. Instead, we calculate ∆ and detM directly from (12). Collecting
terms of k1

(12) ≡ D1 = k21 t
(2)
1 + k1 · t(1)1 + t

(0)
1 , (18)

we identify t
(2)
1 ≡ λ1 and set

D2 = t
(0)
1 − t

(1)
1 · t(1)1

4t
(2)
1

. (19)

We now repeat this and identify t
(i)
2

D2 = k22 t
(2)
2 + k2 · t(1)2 + t

(0)
2 (20)

in order to construct D3. Eventually, we will reach Dℓ+1 = −∆. This can be efficiently implemented in
Mathematica as shown in Listing 2.
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(* This function takes D_i and U_i == \lambda_1 * ... * \lambda_i and

returns D_{i+1} and U_{i+1} *)

UFstep [{di_ , ui_}, k_] := Module [{t0 , t1 , t2},

t0 = Coefficient[di , k, 0];

t1 = Coefficient[di , k, 1];

t2 = Coefficient[di , k, 2];

{t0 - t1*t1 / (4*t2), ui * t2}

]

(* This functions takes a list of loop momenta and propagators and

folds UFstep over it *)

UF[ks_ , props_] := Module [{d0 , dl , ul},

d0 = Total[props x /@ Range[Length[props ]]];

{dl, ul} = Fold[UFstep , {d0, 1}, ks];

{ul, dl ul}

]

Listing 2: Mathematica implementation of U and F

Observation 7 (Graph-theoretical determination of U and F). U and F can also be determined just
by considering the graph of the loop integral in question. (12) assigns a Feynman parameter xi to each
edge of the graph. For example, consider the following one-loop integral

x1

x2

x3

→ p

→ q

=

∫
[dk1]

1

k21

1

(k1 + p)2 −m2

1

(k1 − q)2 −m2
(21)

U is then determined by adding the products xi for each ℓ line cuts of propagators that results in a
tree-level

U = + +

= x1 + x2 + x3 .

(22)

Similarly, for massless propagators, F is found by adding all (ℓ+1) line cuts with the momentum flowing
through the resulting tree

F0 = + +

= p2x1x2 + q2x1x3 + (p+ q)2x2x3 .

(23)

To account for massive propagators we write

F = F0 +
∑

xim
2
iU , (24)

where mi is the mass of the propagator assosciated to xi.

Theorem 8 (Master formula for loop integrals). An arbitrary integral, inlcuding numerators, can be
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calculated as

I = (−1)rΓ(1− ϵ)ℓΓ(r − s− ℓd/2)

∫ ∞

0

δ
(
xi − 1

)( t∏
j=1

dxj
x
αj−1
j

Γ(αj)

)
(

p∏
j=t+1

∂−αj

∂x
−αj

j

)
Ur−s−(ℓ+1)d/2

(F − i0+)r−s−ℓd/2

∣∣∣∣∣
xt+1=...=xp=0

,

(25)

with r (s) the sum of positive (negative) indices, t the number of positive indices and p the length of the
family as defined above. This implies that

α1, ..., αt > 0 and αt+1, ..., αp ≤ 0 . (26)

Proof. As discussed above, we implement numerators in integrals by setting some αi < 0. However,
that would make the Feynman parametrisation ill-defined because the Γ function diverges for negative
integers. To solve this problem, we note an identity for Mellin transforms called Ramanujan’s master
theorem. In our language it states that the Mellin transform of a function f(x) evaluated at negative
integers −n can be written as the n-th derivative of f

{Mf}(−n) =
∫

dxx−n−1 f(x) = Γ(−n)f (n)(0) . (27)

Now the Γ(−n) cancels, finally leading to our master formula.

2 Integration-by-parts reduction

Real world calculations often involve many hundreds of integrals; computing these one by one is clearly
infeasible. Instead we require a method to reduce the number of integrals to a manageable number of
so-called master integrals that we can then calculate.

2.1 Organising integrals

Definition 9 (Integral family). If we have ρ independent external momenta (after applying momentum
conservation), we have ((

ρ

2

))
=

(
ρ+ 1

2

)
=

(ρ+ 1)ρ

2
(28)

possible ways to build scalar products (including masses p2i ). Here, we have defined the multichoose
function ((

n

k

))
=

(
n+ k − 1

k

)
=

(n+ k − 1)!

k!(n− 1)!
, (29)

that counts the number of ways one can pick k unordered elements from a set of n elements, allowing for
repetition.

If we have ℓ loop momenta, there are

p =

((
ρ+ ℓ

2

))
−
((
ρ

2

))
= ℓ

1 + ℓ+ 2ρ

2
(30)

possible scalar products of involving at least one loop momentum. A set of propagators of this size that
allows all scalar products to be written through propagators is called a family. These propagators rarely
all belong to the actual diagram and some might be fictitious, added purely to bring up the numbers.

Definition 10 (Reducible scalar integral). When calculating matrix elements, we often have to find
integrals with numerators. Since the family is complete, we can always write these as propagators and
bring the matrix element into the following form

∑
n

Cn ×
∫ ℓ∏

j=1

[dkj ]
1

Pα1,n

1,n · · · Pαp,n
p,n

. (31)
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(* We define t as the number of propagators ,

r as the sum of pos. powers ,

s as the sum of neg. powers *)

TRS[a_List] := {

Length@Select[a, # > 0 &],

Total[ Select[a, # > 0 &]],

Total[-Select[a, # < 0 &]]

}

Listing 3: Mathematica implementation of t, r, and s given an integral

The powers αi of the propagators Pi may be negative or zero and the Cn are functions of the external
kinematics and the dimension d. These integrals are referred to as reducible scalar integrals.

If we have scalar products with other momenta or even vector integrals we first have to use Passarino-
Veltman decomposition as we would at one-loop.

Definition 11 (reduze organisation [8]). In virtually no case are all αi > 0. Hence, for a given scalar
integral we define

� t: the number of αi > 0

� r =
∑
αi>0

αi the sum of denominator powers

� s = −
∑
αi<0

αi the sum of numerator powers

� the sector ID

ID =

t∑
k=1

2ik−1 with αi1 , ..., αit > 0 . (32)

Obviously s ≥ 0 and r ≥ t. This serves to organise integrals because as soon as one integral in a sector
can be calculated all integrals of the sector can be calculated, at least in principle.

Definition 12 (Corner integral). For a given sector, we call an integral that has only unit powers the
corner integral of that sector. It obviously has r = t.

2.2 Seed identities

To reduce the number of scalar integrals, we are using integration-by-parts (IBP) identities∫
dx u v′ = u v −

∫
dx u′ v . (33)

Theorem 13 (IBP for loop integral). Since the loop integration goes from −∞ to ∞, one can show that
the surface term u v vanishes in dimensional regularisation. In the language of loop integrals∫ ℓ∏

j=1

[dkj ]
∂

∂ki
·

(
q

1

Pα1
1 · · · Pαt

t

)
= 0 , i = 1, ..., ℓ , (34)

where q represents either a loop or an external momentum. Note that q is inside the derivative s.t. if
q = ki the product rule has to be used on the integrand with

∂

∂k
· k ≡ ∂

∂kµ
kµ = d . (35)

IBP relations now allow us to get identities between different integrals.
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moms = {LTensor[k1 , mu], LTensor[p, mu], LTensor[q, mu]};

ibps = Collect[ToFamily@Expand[

D[moms FromFamily[int[{a1,a2,a3}]],k1]

]/. onshell ,_int ,Factor ];

Listing 4: Mathematica implementation of the generation of seed identities

Observation 14 (Heavy quark bubble). Consider the following example

I(a, b) =

∫
[dk]

1[
k2
]a[

(k − p)2 −M2
]b with p2 =M2 . (36)

We can relate integrals with different a and b through

q = k : 0 = (d− 2a− b)I(a, b)− bI(a− 1, b+ 1) ,

q = p : 0 = ( − a+ b)I(a, b)− bI(a− 1, b+ 1) + aI(a+ 1, b− 1) + 2bM2I(a, b+ 1) .
(37)

Definition 15 (Seed identity & compact notation). We call identities of the form (37) seed identities
because we will be using them to create more identities by choosing a and b.

We can write seed identities using the short-hand notation of [2]. n± indicates that the power of the
n-th propagator is raised (lowered) by one.

0 = d− 2a− b− b 1−2+ ,

0 = − a+ b− b 1−2+ + a 2− 1+ + 2bM2 2+ .
(38)

Proof of Observation 14. Setting q = k, we apply (34)

i(a, b) =
∂

∂kµ

(
kµ

1[
k2
]a[

(k − p)2 −M2
]b
)

= kµ
∂

∂kµ

(
1[

k2
]a[

(k − p)2 −M2
]b
)

+

(
∂

∂kµ
kµ

)
1[

k2
]a[

(k − p)2 −M2
]b

= −2kµ

(
a kµ[

k2
]1+a[

(k − p)2 −M2
]b +

b (kµ − pµ)[
k2
]a[

(k − p)2 −M2
]1+b

)

+
d[

k2
]a[

(k − p)2 −M2
]b

=
(d− 2a− 2b)k2 + 2(2a+ b− d)k · p[

k2
]a[

(k − p)2 −M2
]b+1

.

(39)

We now turn this expression back into scalar integrals of the form I(a′, b′). After loop integration and
setting

∫
[dk] i(a, b) = 0 we finally have our first seed identity

0 = −bI(a− 1, b+ 1) + (d− 2a− b)I(a, b) . (40)

With q = p, we find the other identity.

2.3 Laporta algorithm

We now can use identities like the ones above to reduce integrals. However, doing this by hand is not
practical. Instead, we use a modified version of Gaussian elimination to solve a very large though sparse
system of linear equations by focussing on the difficult integrals first.
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I1 ≺≻ I2? t1 <> t2? s1 <> s2? r1 <> r2? I1 ≡ I2

I1 ≻ I2

I1 ≺ I2

= = =

> > >

< < <

Figure 5: A common lexicographical ordering

Definition 16 (Lexicographic ordering). Given two integrals, we need a way to decide which one is more
complicated. The exact specification of this ordering does not matter as long as it is consistent. We will
be using the ordering of Figure 2.3: given I1(t1, r1, s1) and I2(t2, r2, s2), it prefers small t, s, and r in
that order.

Theorem 17 (Laporta’s algorithm). We can now reduce a set of irreducible integral to a (hopefully)
small set of master integrals using Laporta’s algorithm [9, 10] (Figure 6 and Listing 7)

1. Generate imax seed identities of Definition 15

2. List all jmax reducible integrals up to some cut-off rmax and smax and order them using the lexico-
graphical ordering

3. Apply an identity to an integral and call the resulting relation R

4. Substitute all known relations into R, obtaining a relation R′ =
∑

i ciIi = 0

5. If R′ is trivial, i.e. ci = 0 and hence 0 = 0, go back to Step 3. Otherwise, solve R′ for the most
complicated integral and remember this relation.

6. Go back to Step 3 until all integrals and seed identities have been used.

7. Re-substitute and clean up the relations

This algorithm converges because the cut-off points rmax and smax. The system is naturally over-
determined because the number of new integrals grows slower than the number of equations, resulting in
many trivial relations along the way.

Observation 18. The implementation provided here is only for educational purposes as it is horribly
inefficient. Instead, one should use one of many public codes such as AIR [11], FIRE [12], Kira [13],
or reduze [8]. These codes essentially all implement Laporta’s algorithm albeit much cleverer. For
example, Kira uses finite-field sampling to improve the performance, especially for the back-substitution
which can quickly become a bottleneck. Still, the IBP reduction is often a major bottleneck of higher
order calculations and can run for months on a large cluster.

3 Method of regions

In general, the calculation of master integrals with full dependence of any parameter is very difficult
and time consuming. However, in many cases this is not needed, often because the parameters have a
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rmax, smax

{IBP}i
for i =

1, · · · , imax

{I(α⃗)}j
for j =

1, · · · , jmax,

r ≤ rmax,

s ≤ smax

i = j = 1,
rels = {}

Use IBPi
on I(α⃗)j
→ R

R/.rels =∑
ckIk =
R′

ck = 0∀k?

solve R′

for most
compli-
cated I0

add I0 =
−
∑

1
bk
b0
Ik

to rels

j = jmax?
re-sub
& clean

rels

i < imaxi++

i = 1, j++

N

Y

Y

N

NY

Figure 6: Flowchart for Laporta’s algorithm
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rmax = 5;

smax = 3;

IsOkay [{t_ , r_ , s_}] /; And[

t > 0,

rmax >= r,

smax >= s

] = True;

IsOkay[__] = False;

intlist = Flatten[Outer[

int [{##}]& ,

Sequence @@ ConstantArray[Range[-smax , rmax], Length[family ]]

]];

seedPre = Sort[

Select[intlist , IsOkay @* TRS],

LexiOrdered

];

seedRep = seedPre /. int[a_] :> ReplaceAll[Thread [( ToExpression["a"<>

↪→ ToString [#1]] &/@ Range[Length[family ]]) -> a]];

(* We now run Laporta ’s algorithm *)

rels = {i_int /; MemberQ[zerosectors , Sector[i]] -> 0};

Table[

rel = Collect[seed[id] //. rels , _int , Factor ];

If[rel =!= 0,

rels = Flatten[Join[rels , Solve[rel == 0, MostComplicated[rel

↪→ ]]]];

],

{seed , seedRep [[ ;; ]]}, {id, ibps}

];

(* At the borders of the seed range we might get some useless

identities that relate two complicated integrals we don ’t know. *)

IsUseless[a_ -> b_] := Quiet[

LexiOrdered[MostComplicated[a], MostComplicated[b]] === 0

]

RemoveUseless[rels_] := Select[rels , Not@*IsUseless]

(* We also need to do the re -substitution and simplification *)

rels2 = RemoveUseless@Thread[

rels [[2 ;;, 1]] -> Collect[

rels [[2 ;;, 1]] //. rels , _int , Factor

]

];

Listing 7: Mathematica implementation of Laporta’s algorithm

11



strong hierarchy. This could either mean that the electron mass m2 is much smaller than the momentum
transfer Q2 or that the W boson mass m2

W is much larger. In these cases, we instead calculate the
integrals expanded in the small parameter (m/Q2 or Q2/m2

W ). The technique used to achieve this is the
method of regions [14].

3.1 Momentum space

Observation 19 (Heavy particle). Let us first consider the case of a heavy particle m2
X ≫ s in

I =

∫
[dk]

1[
k2 −m2

X + i0+
][
k2 − 2k · p+ i0+

] (41)

with p2 = m2 ≪ m2
X . The naive expansion of the integrand

1[
k2 −m2

X + i0+
][
k2 − 2k · p+ i0+

] = − 1

m2
X

1[
k2 − 2k · p+ i0+

] +O
( 1

m4
X

)
(42)

is obviously wrong since integration and expansion does not commute. The expansion is wrong in the
region where k ∼ mX .

Theorem 20 (The method of regions in momentum space). We can expand an integral already at
integrand level by identifying all relevant regions, expanding in those up to whatever power we desire and
adding them up. In principle infinitely many such regions exist, but most of them vanish in dimensional
regularisation.

Proof. We only prove the example, though this argument can be formalised.
We split the integration at the scale Λ which is m≪ Λ ≪ mX

I =

∫ Λ

0

[dk]
1[

k2 −m2
X

][
k2 − 2k · p

] + ∫ ∞

Λ

[dk]
1[

k2 −m2
X

][
k2 − 2k · p

]
= − 1

m2
X

∫ Λ

0

[dk]
1[

k2 − 2k · p
]︸ ︷︷ ︸

soft

+

∫ ∞

Λ

[dk]

(
1[

k2 −m2
X

][
k2
] + 4(k · p)2[

k2 −m2
X

]3[
k2
])︸ ︷︷ ︸

hard

+O
( 1

m4
x

) (43)

The first term is generally referred to the soft region and the second term as the hard region. We now
need to relate these integrals back to what we can calculate. It turns out we can just integrate over the
whole range since the difference is scaleless, eg.∫ ∞

Λ

[dk]
1[

k2 − 2k · p
] m≪Λ

=

∞∑
i=0

∫ ∞

0

[dk]
(m2)i[
k2
]i+1

= 0 . (44)

We can now solve the integrals in (43) over the whole range and obtain

I =
1

ϵ
+ 1 + log

µ2

m2
X

+
m2

2m2
X

(
1 + 2 log

m2

m2
X

)
. (45)

This agrees with what we would obtain had we expanded the original integral after integration.

Observation 21. This is directly connected to the concept of effective field theories (EFT) where we
add new operators Q and Wilson coefficients C to our Lagrangian

L → L+
∑
i

CiQi . (46)

The hard region corresponds to the renormalisation of the Wilson coefficients while the soft region is the
loop calculation in the EFT. In this language, the different orders in the expansion correspond directly
to the dimensionality of the operators.

This type of expansion is very useful if we want to integrate out a heavy scale. However, we need
more tools if we want to deal with light scales as well.
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Definition 22 (Light-cone coordinates). Let pi = Ei(1, n⃗iβi) be a high energetic particle (β = 1−O(λ2)),
moving in the n⃗i direction. We now decompose its momentum into light-cone basis vectors ni = (1, n⃗i)/

√
2

and n̄i = (1,−n⃗i)/
√
2.1 We now write any momentum pj as

pj = (ni · pj)n̄i + (n̄i · pj)ni + p
(⊥,i)
j = p

(+,i)
j + p

(−,i)
j + p

(⊥,i)
j = (ni · pj , n̄i · pj , pj,⊥)i . (47)

For the case i = j our original energetic particle pi is now

pi =
(
Ei(1− βi)/

√
2, Ei(1 + βi)/

√
2, pi,⊥

)
i
∼ (λ2, 1, λ)i . (48)

We have especially p2i = m2 ∼ λ2 as planned

p2i = 2p
(+,i)
i · p(−,i)

i +
(
p
(⊥,i)
i

)2
= m2 ∼ λ2 . (49)

Here we have used that, since n̄2 = n2 = n · p⊥ = 0,

p
(±,i)
j · p(±,i)

k = p
(±,i)
j · p(⊥,i)

k = 0 (50)

Definition 23 (Momentum regions). Using light-cone coordinates, a region of the loop momentum k is
then defined as a specific choice of parameters a, b, and c where k ∼ (λa, λb, λc)i for a given direction ni.
At this point we expect an infinite number of regions corresponding to the infinite possible choices of a,
b, and c.2 Fortunately, almost all of the infinite number of regions turn out to be zero.

Common momentum regions that contribute are

hard: k ∼ (1, 1, 1) (51a)

soft: k ∼ (λ, λ, λ) (51b)

collinear: k ∼ (λ2, 1, λ) (51c)

ultrasoft: k ∼ (λ2, λ2, λ2) , (51d)

Note that these scalings are only defined for a given direction. If we have multiple directions of energetic
particles as is often the case, we have to distinguish them, leading to more regions.

We might be able to reduce the number of directions if some particles are back-to-back as is the case
in γ∗ → e+(n1)e

−(n2). The (λ2, 1, λ)2 region is actually the same as the (1, λ2, λ)1 region, reducing the
amount of bookkeeping required.

In what follows, I will drop the index for the direction when it is unambiguous.

Observation 24 (Light particles). Consider the following integral

I =
p+ q

k − q

k + p

=

∫
[dk]

1[
(k + p)2 −M2

][
(k − q)2 −m2

]2 , (52)

with q2 = m2 ≪ p2 = M2 ∼ (p+ q)2 = s. A convenient choice is p ∼ (1, 1, 0), q ∼ (0, 1, λ) which results
in

p2 = 2p+ · p− =M2 ∼ 1 and q2 = q2⊥ = m2 ∼ λ2 . (53)

By trying all sensible regions, we find that all but two are scaleless. Consider eg. k ∼ (λ, λ, λ)

Is =
1

λ3

∫
[dk]

1[
2k+ · q−

]2[
2k · p

] = 0 , (54)

where we have used that k+·q− = k·q−. The only scaleful regions are k ∼ (1, 1, 1) (hard) and k ∼ (λ2, 1, λ)
(collinear).

1Our definition of n and n̄ differs from the standard convention by the normalisation factor 1/
√
2.

2One can show that c = (a+ b)/2 with other choices resulting in scaleless integrals.
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� In the hard region we have k ∼ (1, 1, 1) and we can write

Ih =

∫
[dk]

1[
(k + p)2 −M2

][
(k − q−)2

]2 +O(λ2) . (55)

The leading term is just the original integral with m = 0 since q2− = 0. In real-world applications,
we might be able to obtain this from already known QCD results. We have

Ih = Γ(1− ϵ)Γ(ϵ)

∫
dx1dx2δ(· · · )x1

(
x1 + x2

)−2+2ϵ(
M2x22 + (M2 − s)x1x2

)ϵ
= Γ(1− ϵ)Γ(ϵ)

∫ 1

0

dx2(1− x2)x
−ϵ
2

(
M2 − s+ sx2

)−ϵ

=
(1− x)ϵ

M2

(M2

µ2

)−ϵ
(
Γ(1− ϵ)Γ(1 + ϵ)

1− ϵ
2F1

[
1− ϵ, 1 + ϵ

2− ϵ
;x

]

+ Γ(1− ϵ)Γ(ϵ)2F1

[
−ϵ, 1 + ϵ

2− ϵ
;x

])

=
1− x

M2

(
1

ϵ
+
(
2 +

1

x

)
log(1− x) + log

µ2

M2

)
+O(m2) .

(56)

where we have set δ(1 − x1 + x2) and defined x = s/(s −M2). Here we have used a 2F1 function
that we will encounter again in Section 4 and expanded it with HypExp [15].

� In the collinear region, we have account for a factor λ4 from d4k. Hence, we have

Ic =

∫
[dk]

1[
2k− · p+

][
k2 − 2k · q

]2
= −Γ(1− ϵ)Γ(1 + ϵ)

∫
dx1dx2δ(· · · )

x−1+ϵ
1(

m2x1 + (m2 +M2 − s)x2
)1+ϵ

= −M−2
(m2

µ2

)−2ϵ

Γ(1− ϵ)Γ(ϵ)(1− x)

=
1− x

M2

(
− 1

ϵ
+ log

m2

µ2

)
.

(57)

Here, we once again see that we have lost some complexity since the U polynomial is trivial.

Both Ic and Ih are divergent but their sum is finite as was the original integral. However, Ih ∝
(M2/µ2)−ϵ and Ic ∝ (m2/µ2)−ϵ so that log(M2/m2) remains

Ic + Ih = −1− x

xM2

(
x log

M2

m2
+ (1− 2x) log(1− x)

)
. (58)

This is a common feature in the method of regions: all regions are separately more divergent than the
total result which can introduce new logarithms.

3.2 Parameter space

While the method of region is doubtlessly an invaluable tool, especially when we want to connect its
regions to effective theories. However, if all we want to do is calculate integrals without having to bother
with a physical intuition, it can be unwieldy, especially since some regions are not visible for a given
momentum routing. It turns out we can formulate the method of regions at the level of the Feynman
parameters which is much more general and allows for easier automation [16, 17].

Since an important aspect of the method of region is scalelessness, we need to formalise this at the
level of the Feynman parameters.
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Lemma 25 (Scaleless integrals). We call an integral scaleless if rescaling the loop momentum and/or
the external momenta results in a global factor. These integrals vanish in dimensional regularisation. For
example,

I =

∫
[dk]

1[
k2
]n →

∫
[d(αk)]

1[
(αk)2

]n = αd−2nI = 0 . (59)

In the language of Feynman parameters, the integral vanishes if we can rescale a strict subset of parameters

U(x1, · · · , αxj , · · · , xn) = αuU(x1, · · · , xj , · · · , xn)
F(x1, · · · , αxj , · · · , xn) = αfF(x1, · · · , xj , · · · , xn) ,

(60)

for some scaling dimensions u and f . For simplicity we only consider UF → αu+fUF .

Theorem 26 (The method of regions in parameter space). To expand a parameter integral, we multiply
the small kinematic invariants with appropriate power of λ in F . A region is defined as a (n + 1)-
dimensional vector v⃗ = (1, v1, · · · , vn) where xi ∼ λvi . We can relate v⃗ to the complex hull of the point
cloud that is spanned by U and F (see proof and Observation 27 for details). This is implemented in
public codes such as asy [16, 17].

Observation 27 (Example in parameter space). For the example (52) we have v⃗h = (1, 0, 0) and v⃗c =
(1, 0,−1). We have hence

Ih = −Γ(1− ϵ)Γ(1 + ϵ)

∫
dx1dx2δ(· · · )x2

(x1 + x2)
−1+2ϵ(

M2x21 + (M2 − s)x1 x2
)1+ϵ , (61)

Ic = −Γ(1− ϵ)Γ(1 + ϵ)

∫
dx1dx2δ(· · · )

x2ϵ2(
m2x22 + (M2 − s)x1 x2

)1+ϵ . (62)

The integration of the Feynman parameters is now trivial again as above.

Proof of Theorem 26. Consider a term in F or U , it will have the structure

λr0xr11 · · ·xrnn ≡ r⃗ = (r0, r1, . . . , rn) . (63)

We view the terms as a point cloud C = CF ∪ CU in an (n + 1) dimensional space. F is homogeneous,
i.e. r1 + · · · + rn = ℓ + 1, meaning that all terms in F live on an n dimensional hyperplane. Were the
dimensionality lower than n, we could factor out a Feynman parameter, making the integral scaleless.

For a given region, this term will scale as

λr0
(
x1λ

v1
)r1 · · · (xnλvn)rn ∼ λr0+v1r1+···+vnrn = λv⃗·r⃗ . (64)

After expanding F and U in λ, all remaining terms have to have the same scaling since otherwise the
expansion would not have been complete. In other words, the remaining terms belong to a hyperplane
orthogonal to v⃗. Points that are above this hyperplane are more suppressed in λ since they have larger
r0, the power of λ.

If the dimensionality of this hyperplane is lower than n, the integral is scaleless. Thus we are looking
for facets of the envelope of the point cloud C. The v⃗ are the (inwards facing) normal vectors of these
facets with v1 > 0. This automatically selects only the bottom facets.

Observation 28 (Construction of v⃗). For the example (52) we have

F =M2x21 +M2x1x2 − sx1x2 +m2x22λ ,

U = x1 + x2 .
(65)

This results in the point cloud

CF =
{
(0, 2, 0), (0, 1, 1), (0, 1, 1), (1, 0, 2)

}
CU =

{
(0, 1, 0), (0, 0, 1)

} (66)
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r1

r2

r0

v⃗ (1)

v⃗ (2)

Figure 8: The point clouds CF in red and CU in black and their convex hull in blue. The grey shaded
region corresponds to the requirement that F is homogeneous, i.e. r1+ r2 = ℓ+1. An interactive version
of this plot can be found on the course website.

as shown in Figure 8. Next, we construct the convex hull of C = CF ∪CU . It has five facets of which we
only care about two, those spanned by

F1 =

r⃗ (1)

r⃗ (2)

r⃗ (3)

 =

0 0 1
0 1 1
1 0 2

 and F2 =


r⃗ (1)

r⃗ (2)

r⃗ (3)

r⃗ (4)

 =


0 0 1
0 1 0
0 1 1
0 2 0

 . (67)

We can find the normal vectors v⃗ (1) and v⃗ (2) by finding the kernel of these matrices as

v⃗ (1) =
(
1, 0,−1

)
and v⃗ (2) =

(
1, 0, 0

)
(68)

Here, v⃗ (2) corresponds to the hard region and v⃗ (1) to the collinear region. We do not, for example, care
about this facet

F3 =

0 1 1
1 0 2
0 2 0

 (69)

which has v⃗ (3) = (0,−1,−1).

4 Mellin Barnes integration

When calculating loop integrals, we are often faced with having to integrate polynomials to some non-
integer power. Since we can (essentially) only integrate using the definition of the Γ function3 the most
complicated trivially solvable integral is∫ ∞

0

dx xα(a+ bx)β =
Γ(1 + α)Γ(−1− α− β)

Γ(−β)
a1+α+β

b1+α
. (8)

It goes without saying that most real-world integrals are more complicated than this.

3Technically, we can also solve integrals of the form
∫
dx, xa(1+x)b(z+x)c using the methods presented in this section.

Hence this integral is just a shortcut to what we show here.
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4.1 The Mellin Barnes theorem

Observation 29 (Heavy-quark form factor). Consider once again the following one-loop integral

I(a) =

∫
[dk]

1[
k2
]a[

k2 + 2k · p
][
k2 − 2k · q

] (70)

with p2 = q2 = m2, (p + q)2 = s and some integer a. After Feynman parametrisation we find (see eg.
Observation 7)

I(a) = (−1)a
Γ(1− ϵ)Γ(a+ ϵ)

Γ(a)

∫
dx1dx2dx3 δ(· · · )xa−1

1

(
x1 + x2 + x3

)−2+a+2ϵ(
m2 x22 + (2m2 − s)x2x3 +m2 x23

)a+ϵ . (71)

We can trivially solve the x1 integral using (8)

I(a) = (−1)a
Γ(1− ϵ)Γ(2− 2a− 2ϵ)Γ(a+ ϵ)

Γ(2− a− 2ϵ)

∫
dx2dx3 δ(· · · )

(
x2 + x3

)−2+2a+2ϵ(
m2 (x2 + x3)2 − s x2x3

)a+ϵ , (72)

but now are stuck. Obviously we cannot just use (8) to solve this integral. However, if we could somehow
split the F polynomial into the terms ∝ m2 and those ∝ s, we might stand a chance. To do this, we note
the Mellin-Barnes theorem.

Theorem 30 (Mellin-Barnes split). We can split an arbitrary polynomial into two factors at the cost of
an integration. You can think of this akin to an inverse Feynman parametrisation

1

(A+B)λ
=

1

2πi

1

Γ(λ)

∫ +i∞

−i∞
dz Γ(λ+ z)Γ(−z)AzB−z−λ . (73)

We ignore the factor 1/(2πi) as it will cancel with the one from the residue theorem when we eventually
calculate the contour integral. The contour in question is chosen to separate the poles from the left and
right Γ functions. We will soon see how this works in practise.

Crucially, we are not allowed to write eg.

Γ(1 + z)Γ(−z)
Γ(z)

= −Γ(1− z) (74)

since it would confuse left and right poles.

Definition 31 (Left and right Γ functions). Γ(z) functions has infinitely many poles at z = −n. We
hence call Γ functions of the form Γ(· · · − z) right Γ functions as their poles go right towards +∞.
Similarly, Γ(· · ·+ z) are left Γ functions.

Observation 32 (Heavy-quark form factor, Pt. 2). Using (73), we write I as

I(a) = (−1)a(m2)−a−ϵΓ(1− ϵ)Γ(2− 2a− 2ϵ)

Γ(2− a− 2ϵ)

∫ i∞

−i∞
dz
(−s
m2

)z
Γ(−z)Γ(a+ ϵ+ z)∫

dx2dx3 δ(· · · )
xz2x

z
3

(x2 + x3)2+2z
.

(75)

Now we can use (8) to solve this integral, using for example δ(· · · ) = δ(1− x3)∫
dx2dx3 δ(· · · )

xz2x
z
3

(x2 + x3)2+2z
=

Γ(1 + z)2

Γ(2 + 2z)
. (76)

Therefore for I

I(a) = (−1)a(m2)−a−ϵΓ(1− ϵ)Γ(2− 2a− 2ϵ)

Γ(2− a− 2ϵ)

∫ i∞

−i∞
dz
(−s
m2

)z Γ(−z)Γ(a+ ϵ+ z)Γ(1 + z)2

Γ(2 + 2z)
. (77)
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GammaResidue[expr_ ,{z_ ,pole_ }]:= Assuming[

Element[n,Integers] && n>=0,

Residue[expr ,{z,pole}]

]/.n!-> Gamma[n+1]

Listing 9: Mathematica calculation of the residue

4.2 Solving Mellin Barnes integrals using the residue theorem

Theorem 33 (Residue theorem for MB). Assuming the MB integrand falls quickly enough, i.e. the arc
C ′ vanishes (see eg. Figure 10), we can solve a single MB integral using the residue theorem. Consider

I =

∫ i∞

−i∞
dz xz

(
nL∏
i=1

Γ(ai + z)ci

)(
nR∏
i=1

Γ(bi − z)di

)(
· · ·
)−1

︸ ︷︷ ︸
f(z)

(78)

with ci, di > 0. Then

I =

nL∑
i=1

∞∑
n=0

res
−a−n

f(z) =

nR∑
i=1

∞∑
n=0

res
b+n

f(z) . (79)

Lemma 34 (Residue formulas). We remember that if f(z) has a pole of order n at c,

res
c
f(z) =

1

(n− 1)!
lim
z→c

dn−1

dzn−1

[
(z − c)nf(z)

]
. (80)

If f(z) = g(z)h(z) and h is free of poles at c, this means

res
c
f(z) = h(c) res

c
g(z) . (81)

Finally,

res
−n

Γ(z) =
(−1)n

n!
, (82)

res
−n

Γ(z)2 =
2

(n!)2
ψ(n+ 1) , (83)

res
−n

Γ(z)3 =
(−1)n

2(n!)4

[
π2 + 9ψ(n+ 1)2 − 3ψ′(n+ 1)

]
, (84)

res
−n

ψ(z) =− 1 . (85)

Here we have also included the derivative of the Γ function, the digamma function ψ(x) = Γ′(x)/Γ(x).
Note that these rules can be implemented in Mathematica with an Assumption as shown in Listing 9.

Observation 35 (Heavy-quark form factor, Pt. 3). For simplicity we close the contour to the right as
shown in Figure 10 for a = 1. We have one residue to calculate since nR = 1

I(a) = (−1)a(m2)−a−ϵΓ(1− ϵ)Γ(2− 2a− 2ϵ)

Γ(2− a− 2ϵ)

∞∑
n=0

res
n

[(−s
m2

)z Γ(−z)Γ(a+ ϵ+ z)Γ(1 + z)2

Γ(2 + 2z)

]

= (−1)a+1(m2)−a−ϵΓ(1− ϵ)Γ(2− 2a− 2ϵ)

Γ(2− a− 2ϵ)

∞∑
n=0

( s

m2

)nΓ(1 + n)Γ(a+ n+ ϵ)

Γ(2 + 2n)
.

(86)

We can solve the remaining sum and find

I(a) = (−1)a+1(m2)−a−ϵΓ(1− ϵ)Γ(2− 2a− 2ϵ)

Γ(2− a− 2ϵ)
Γ(1 + ϵ)2F1

[
1, 1 + ϵ

3
2

;
s

4m2

]
. (87)
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C

C ′

Γ(1 + z) Γ(−z)

Γ(1 + z + ϵ)

Re(z)

Im(z)

Figure 10: The contour for the MB integral (77) for a = 1

Definition 36 (Hypergeometric function). We define the hypergeometric function as

pFq

[
a1, . . . , ap
b1, . . . , bq

; z

]
=

∞∑
n=0

(a1)n · · · (ap)n
(b1)n · · · (bq)n

zn

n!
(88)

with the Pochhammer symbol an = Γ(a+ n)/Γ(n) and the factorial n! = Γ(1 + n). For certain values of
ai and bi, these functions can be expanded in ϵ using HypExp [15].

4.3 Solving Mellin Barnes integrals using Barnes lemma

Observation 37 (Resolving singularities). Let us consider the special case of a = 0 (ignoring the fact
that there are easier ways to obtain this result)

I(0) = (m2)−ϵΓ(1− ϵ)Γ(2− 2ϵ)

Γ(2− 2ϵ)

∫ i∞

−i∞
dz
(−s
m2

)z Γ(−z)Γ(ϵ+ z)Γ(1 + z)2

Γ(2 + 2z)
. (89)

Setting ϵ→ 0 is obviously not possible since the left pole from Γ(ϵ+ z) would collide with the right pole
from Γ(−z), meaning the contour would have to cross a pole. However, if we moved the contour as shown
in Figure 11 then we can set ϵ → 0. By crossing a pole with the contour we have to explicitly add the
residue of the pole

I(0) = (m2)−ϵΓ(1− ϵ)

[∫ − 1
2+i∞

− 1
2−i∞

dz
(−s
m2

)z Γ(−z)Γ(ϵ+ z)Γ(1 + z)2

Γ(2 + 2z)
− res

0

[
· · ·
]

︸ ︷︷ ︸
−Γ(ϵ)

]
(90)

=
1

ϵ
− logm2 +

∫ − 1
2+i∞

− 1
2−i∞

dz
(−s
m2

)z Γ(−z)Γ(+z)Γ(1 + z)2

Γ(2 + 2z)
+O(ϵ) . (91)

At this stage we may expand in ϵ to whatever order we require.
Note that we can also numerically integrate (91).
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CC ′

Γ(1 + z) Γ(−z)

Γ(z + ϵ)

Re(z)

Im(z)

Figure 11: The contour for the MB integral (77) for a = 0

Observation 38 (Slightly contrived box). Consider this (slightly contrived) example

I(a) =

∫
[dk]

1[
k2
][
(k − p1)2

][
(k + p2)2

][
(k − p1 + p4)2

] , (92)

with p21 = p23 = (p1 + p2)
2 = (p1 − p3)

2 = s and p22 = p24 = 0. This example could for example occur
when calculating the boundary condition for some differential equations of Feynman integrals. There
have usually much simpler and often unphysical kinematics and are then evolved to the physics situation.
We have

I = (−s)−2−ϵΓ(1− ϵ)Γ(2 + ϵ)

∫
dx1dx2dx3dx4δ(· · · )

(
x1 + x2 + x3 + x4

)2ϵ(
x1 x2 + x3 (x2 + x4)

)2+ϵ . (93)

We split the x3 term using Mellin Barnes

I = (−s)−2−ϵΓ(1− ϵ)

∫ +i∞

−i∞
dzΓ(−z)Γ(2 + ϵ+ z)

∫
dx1dx2dx3dx4δ(· · · )

x−2−z−ϵ
1 x−2−z−ϵ

2 xz3 (x3 + x4)
z (x1 + x2 + x3 + x4)

2ϵ .

(94)

We can now obtain

I = (−s)−2−ϵΓ(1− ϵ)Γ(−ϵ)
Γ(−2ϵ)

∫ +i∞

−i∞
dz

Γ(−z)Γ(1 + z)Γ(−1− ϵ− z)2Γ(2 + ϵ+ z)

Γ(−ϵ− z)
. (95)

We could obviously solve this with the residue theorem but we have two left poles or two right poles, one
of them involving Γ(· · · − z)2. Let us try to expand in ϵ by resolving the singularities

I = (−s)−2−ϵΓ(1− ϵ)Γ(−ϵ)
Γ(−2ϵ)

(∫ − 1
2+i∞

− 1
2−i∞

dz
Γ(−z)Γ(1 + z)Γ(−1− ϵ− z)2Γ(2 + ϵ+ z)

Γ(−ϵ− z)
− res

−1−ϵ

(
· · ·
))

= 2(−s)−2−ϵ

[
1

ϵ2
− 2ζ2 +

∫ − 1
2+i∞

− 1
2−i∞

dzΓ(1 + z)Γ(2 + z)Γ(−1− z)2

−

(
2ζ3 +

∫ − 1
2+i∞

− 1
2−i∞

dzΓ(1 + z)Γ(2 + z)Γ(−1− z)2
(
ψ(−z)− 2ψ(−1− z) + ψ(2 + z)

))
ϵ

]
.

(96)
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Theorem 39 (Barnes Lemma). We have two Barnes Lemma that can be used to calculate integrals∫ +i∞

−i∞
dz Γ(λ1 + z)Γ(λ2 + z)Γ(λ3 − z)Γ(λ4 − z) =

Γ(λ13)Γ(λ14)Γ(λ23)Γ(λ24)

Γ(λ1234)
, (97)∫ +i∞

−i∞
dz

Γ(λ1 + z)Γ(λ2 + z)Γ(λ3 + z)Γ(λ4 − z)Γ(λ5 − z)

Γ(λ12345 + z)
=

Γ(λ14)Γ(λ24)Γ(λ34)Γ(λ15)Γ(λ25)Γ(λ35)

Γ(λ1245)Γ(λ1345)Γ(λ2345)
,

(98)

with λ12 = λ1 + λ2 etc. The Barnes Lemma are particularly useful when dealing with multiple MB
integrals. Further, they can be used to generate further identities. For example, taking the derivative of
(97) w.r.t. λ1∫ +i∞

−i∞
dz Γ(λ1 + z)Γ(λ2 + z)Γ(λ3 − z)Γ(λ4 − z)ψ(λ1 + z) =

Γ(λ13)Γ(λ14)Γ(λ23)Γ(λ24)

Γ(λ1234)

×
[
ψ(λ13) + ψ(λ14)− ψ(λ1234)

]
.

(99)

Observation 40 (Slightly contrived box, Pt. 2). We can now calculate the O(ϵ0) term of (96), and by
taking the derivative w.r.t. the λi

I = 2(−s)−2−ϵ

[
1

ϵ2
− ζ2 −

(
− ζ3 + γEζ2 +

∫ − 1
2+i∞

− 1
2−i∞

dzΓ(1 + z)Γ(2 + z)Γ(−1− z)2ψ(−z)

)
ϵ

]
. (100)

It is possible to write ψ(−z) as ψ(1 + z) and again use the Barnes Lemmas. Alternatively, we can note
that

Γ(−1− z)Γ(2 + z) = − 1

1 + z
Γ(−z)Γ(2 + z) = −Γ(1 + z)Γ(−z) . (101)

We are now allowed do this, since we have specified the contour explicitly and no longer need to distiguish
left and right poles. We write∫ − 1

2+i∞

− 1
2−i∞

dzΓ(1 + z)Γ(2 + z)Γ(−1− z)2ψ(−z) = −
∫ − 1

2+i∞

− 1
2−i∞

dzΓ(1 + z)2Γ(−z)Γ(−1− z)ψ(−z)

= −2ζ3 − γEζ2 .

(102)

With this

I = 2(−s)−2−ϵ

[
1

ϵ2
− ζ2 − 3ζ3ϵ

]
. (103)

Naturally, doing this manually quickly becomes annoying, the higher we want to go in ϵ.

Observation 41 (Strategies). In the example above, the integral has trivial dependence on external
kinematics. In general, this means that it can be written as I = (Q2)ℓϵf(ϵ) where f is some function
that only depends on the dimensionality of spacetime. Using the methods described in Observation 37,
we are able to expand f around ϵ = 0 and calculate the remaining integrals numerically. We will shortly
see a particularly clever way to exploit this.

If that were not the case, we have to explicitly sum the residues. Mathematica is capable of doing
this in a limited number of cases and the FORM code XSummer [18] covers many more. However, all of this
works only if there is only a single integration left. Finding a series expansion for multiple MB integrals
is highly non-trivial and subject to active research (eg. [19]).

Theorem 42 (PSLQ algorithm). Given some real (notionally transcendental) numbers ai, we can find
rational numbers ri such that

r0 a0 + r1 a1 + · · ·+ rn an = 0 (104)

using black magic, also known as number theory. An implementation of this algorithm can be found with
these lecture notes.
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Observation 43 (Using PSLQ). If we can guess a basis of transcendetal numbers such as{
ai
}
i=1,··· ,n = {1, ζ2, ζ3, ζ4, · · · , log 2, log 2ζ2, · · · } , (105)

we can numerically evaluate a MB integral to very high precision using NIntegrate as a0 and find an
analytic solution

a0 =
r1
r0
a1 +

r2
r0
a2 + · · ·+ rn

r0
an . (106)

Depending on which factors are pulled out before a0 is calculated, we might need to add γE and π to the
basis. The larger n is, the more digits we need in a0 which quickly gets expensive.

In our example, expanding (96) to ϵ4, we have for the integral part

∫ − 1
2+i∞

− 1
2−i∞

dz
(
· · ·
)
= 3.2898681336964528729448303332920503784378998024136

− 2.4041138063191885707994763230228999815299725846810 ϵ1

+ 2.1646464674222763830320073930823358055495019038375 ϵ2

− 9.9830729114759243254510727388545706244427677056444 ϵ3

− 2.8676528331332807519186620879948731784305070422237 ϵ4

(107)

calculated to 50 digits accuracy (cf. Listing 12). We can now use PSLQ with the following basis

{ ζ2︸︷︷︸
w=2

, ζ3︸︷︷︸
w=3

, ζ4︸︷︷︸
w=4

, ζ5, ζ2ζ3︸ ︷︷ ︸
w=5

, ζ6, ζ3ζ3︸ ︷︷ ︸
w=6

} (108)

to find∫ − 1
2+i∞

− 1
2−i∞

dz
(
· · ·
)
= 2ζ2 − 2ζ3ϵ

1 + 2ζ4ϵ
2 −

(
2ζ5 − 4ζ2ζ3

)
ϵ3 −

(17
2
ζ6 + 4ζ23

)
ϵ4 +O(ϵ5) . (109)

The basis has the added property that is has constant transcendentality.
In [20], Stefano Laporta calculated 1100 digits of the 4-loop QED correction to (g − 2)e and fitted a

basis with more than hundred elements.

Definition 44 (Transcendentality). For each element of the PSLQ basis a we can define a transcenden-
tality w(a). This property is multiplicative, i.e. w(a1 × a2) = w(a1) + w(a2). Some transcendentalities
can be found in Table 13. Note that even though (108) has what is called constant transcendentality (at
each order w is constant), this is not a very useful concept for QCD. However, certain symmetries such
as conformal symmetry result in constant transcendentality at the level of the matrix element.
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