

48. Herbstschule für Hochenergiephysik 2016

Muon decay

Yannick Ulrich

Paul Scherrer Institut / Universität Zürich

10Th September 2016

Polarisation and γ^5

The radiative decay

The rare decay

Outlook

Polarisation and γ^5

The radiative decay

The rare decay

Outlook

Universität Zürich^{we}

Direct search Sensitive up to $\mathcal{O}\left(10^3\,\text{GeV}\right)$

Indirect search Sensitive up to $\mathcal{O}\left(10^{13}\,\text{GeV}\right)^1$

¹Model dependent

Yannick Ulrich, 10.09.16 - p.4/22

Importance of background

Yannick Ulrich, 10.09.16 - p.5/22

	Experimental	Theoretical (4-Fermi)	
Normal $\mu \rightarrow \nu \bar{\nu} e$	TWIST 1 $\mathcal{O}\left(10^{-4} ight)$	NLO (polarised, MC) [Arbuzov 2001] NNLO (unpolarised, analytic) [Anastasiou, Melnikov, and Petriello 2007]	
Radiative $\mu \rightarrow \nu \bar{\nu} e + \gamma$	$egin{array}{c} MEG \ \mathcal{O}\left(1\% ight) \end{array}$	NLO (polarised, MC) [Fael, Mercolli, and Passera 2015]	
Rare $\mu \rightarrow \nu \bar{\nu} e + e^+ e^-$	$Mu3e^2 \mathcal{O}\left(10\% ight)$	LO (polarised, MC)	

¹Michel parameters ²Proposed

Yannick Ulrich, 10.09.16 - p.6/22

Open theoretical issues

Use muon as toy process: clean QED

- γ^5 : Treatment in dim-reg?
- Regularisation scheme dependency
- Large logs, esp. $\tau \rightarrow \nu \bar{\nu} e + \gamma$ (3.5 σ deviation!) [Fael, Mercolli, and Passera 2015]
- No NLO for rare decay

Polarisation and γ^5

The radiative decay

The rare decay

Outlook

Yannick Ulrich, 10.09.16 - p.8/22

- Two equivalent ways of introducing polarisations dependence
 - "Closing the trace" $u(p)\bar{u}(p) = (\not p + m)\frac{1+\gamma^5 \not s}{2}$
 - Massive spinor helicity formalism

$$u_{\pm}(p) = \left|\ell^{\pm}\right\rangle + \frac{m}{\left\langle\ell^{\pm}\right|n^{\mp}\right\rangle} \left|n^{\mp}\right\rangle$$
$$\left|k^{\pm}\right\rangle = \frac{1 \pm \gamma^{5}}{2} u(k)$$

 $n \ {\rm is} \ {\rm related} \ {\rm to} \ s \ {\rm [See \ Ellis' \ lecture]}$

• Both introduce a γ^5 !

- $\gamma^5=\mathrm{i}\gamma^0\gamma^1\gamma^2\gamma^3$ is not well defined in d dimensions
- There are at two sources of γ⁵:

• The 4-Fermi vertex $j^{\mu}_{V-A}(a,b)= \bar{\psi}_a\gamma^\mu(1-\gamma^5)\psi_b$: [Berman and Sirlin 1962]

$$j^{\mu}_{V-A}(a,b) = \underbrace{\bar{\psi}_a \gamma^{\mu} \psi_b}_{j^{\mu}} - \bar{\psi}_a \gamma^{\mu} \psi'_b$$

 $\psi'_b = \gamma^5 \psi_b$ corresponds to an electron with $m = -m_e$.

• Polarisation: Spinor helicity formalism in FDH (external particles in d = 4)

Polarisation and γ^5

The radiative decay

The rare decay

Outlook

Yannick Ulrich, 10.09.16 - p.11/22

The radiative decay

Fully differential NLO predictions for MEG @ PSI

• 4-Fermi interaction, fierzed at the Lagrangian

$$\mathcal{L} = \mathcal{L}_{\mathsf{QED}} + \frac{G_F}{\sqrt{2}} j_{V-A}(\mu, e) \cdot j_{V-A}(\nu_{\mu}, \nu_{e})$$

- Get amplitudes from GoSam [Cullen et al. 2014]
- FKS subtraction [Frixione, Kunszt, and Signer 1996]
- Custom phase spaces for increased stability and FKS
- (Almost) original VEGAS for integration [Lepage 1980]

Branching ratio: Experimental comparison

Yannick Ulrich, 10.09.16 - p.14/22

Branching ratio: Experimental comparison

Yannick Ulrich, 10.09.16 - p.14/22

Theorist's version of the MEG detector @ PSI

Fig.: Angular distribution:

Fig.: Angular distribution: MEG cuts on the electron loose $4.10\,\%$ of the events

Fig.: Angular distribution: Polarised source $\langle\cos\theta_c\rangle\approx-0.063<0$ corresponding to $\langle\theta_c\rangle\approx93.62^\circ$

Neutrino spectrum

Fig.: Neutrino spectrum:

Universität Zürich^{ver}

Fig.: Neutrino spectrum: Experimental resolution $\approx 2 \text{ MeV} \Rightarrow \text{low energy}$ neutrino are important (below 5 MeV: 7.2×10^{-4})

Polarisation and γ^5

The radiative decay

The rare decay

Outlook

The rare decay

 $\rm NLO$ branching ratios for Mu3e @ PSI

- $4_{\text{Born}} + 40_{1-\text{loop}} + 20_{\text{real}}$ diagrams up to pentagons
- A lot but not that many
- Use same approach (GoSam, FKS, VEGAS)
- Phase space more important than ever
- Mu3e cuts $E_e > 10 \text{ MeV}$

-

Preliminary results

	LO	NLO only	K-factor
$\mathcal{B}(no cuts)$	$3.605 imes10^{-5}$	$0.007 imes10^{-5}$	-0.19%
$\mathcal{B}(E>10\mathrm{MeV})$	$2.309 imes10^{-6}$	-0.041 $ imes$ 10 ⁻⁶ $ $	-1.78%

Polarisation and γ^5

The radiative decay

The rare decay

Outlook

Conclusion and outlook

Conclusion

- New fully differential NLO predictions for the radiative decay for MEG
- $\bullet~{\rm New~NLO}$ predictions for the rare decay for Mu3e

Conclusion

- New fully differential NLO predictions for the radiative decay for MEG
- New NLO predictions for the rare decay for Mu3e
- Work to be done
 - Predict / Resum large logs $\log \frac{m}{M} \log \frac{\omega_0}{M}$ @ NLO and possibly NNLO
 - \Rightarrow Solve 3.5σ discrepancy
 - Produce distributions for the rare decay @ NLO

A slide from Andrea Visconti

Regularization scheme dependence of two-loop amplitudes

└__{Schemes}

- **1** Variants of dimensional regularisation:
 - CDR ("conventional dimensional regularization")
 - HV ("'t Hooft Veltman")
- 2 Variants of dimensional reduction:
 - DRED ("original/old dimensional reduction")
 - FDH ("four-dimensional helicity scheme")

	CDR	$_{\rm HV}$	FDH	DRED
internal gluon	$\hat{g}^{\mu\nu}$	$\hat{g}^{\mu u}$	$g^{\mu\nu}$	$g^{\mu\nu}$
external gluon	$\hat{g}^{\mu u}$	$\bar{g}^{\mu u}$	$\bar{g}^{\mu u}$	$g^{\mu u}$
\hat{g}_{a}	$\hat{g}_{\hat{q}}$		g ¢ q	$\int_{a}^{g} q$
ĝ for ĝ	6000	<u> </u>	600	g for

FDH

g=Q4D , $\hat{g}=QD-{\rm dim.}$, $\bar{g}=4-{\rm dim.}$

HV

CDR

Yannick Ulrich, 10.09.16 - p.23/22

DRED