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Reminder: Interaction picture

Let us split the Hamiltonian H = H0 +H ′ where H0 is solvable exactly, i.e. we can find U0 s.t.

i
d

dt
U0 = H0U0 .

We now define U = U0U
′

i
d

dt
U = i

(
d

dt
U0

)
︸ ︷︷ ︸

H0U0

U ′ + iU0
d

dt

!
= HU = (H0 +H ′)U0U

′ ,

⇒ i
d

dt
U ′ = U †

0H
′U0U

′ = HIU
′ , (1)

defining the interaction picture HI . We can solve (1) iteratively

U(∞,−∞) = 1− i

∫
HI(τ)dτ + (−i)2

∫
dτ2

∫
dτ1HI(τ2)HI(τ1) + ...

= T exp

(
−i

∫
dτHI(τ)

)
where T ensures the time-ordering, i.e.

(−i)2
∫

dτ2

∫
dτ1HI(τ2)HI(τ1) =

(−i)2

2!
T
{
HI(τ2)HI(τ1)

}
.
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The S matrix in quantum field theory

The object we want to compute in QFT is the S matrix

S = UI(∞,−∞) = T exp

(
−i

∫
dτHI(τ)

)
= 1 + iT ,

where HI is hopefully small so that the series converges fast enough. Now, computing S in all
generality is obviously impossible. Let us instead look at the transition amplitude between some
initial state |i⟩ and some final state |f⟩. This is

⟨f |S|i⟩ = ⟨f |i⟩ − (2π)4δ(Pf − Pi)Afi ,

A is now the invariant transition amplitude. Squaring it will give us a matrix element1.

The S matrix is unitary

1 =
∑
f

| ⟨f |S|i⟩ |2 =
∑
f

〈
i
∣∣∣S†

∣∣∣f〉 ⟨f |S|i⟩ =
〈
i
∣∣∣S†S

∣∣∣i〉 .

If we split S = 1 + iT we can see

1 = SS† = 1 + iT − iT † + T T †

T − T † =2ℑT = iT T † .

If we calculate

2 ⟨f |ℑT |i⟩ =
∑
n

〈
f
∣∣∣T †

∣∣∣n〉 ⟨n|T |i⟩

and set f = i, we find the total cross section i→ whatever∑
n

| ⟨n|T |i⟩ |2 = 2 ⟨i|ℑT |i⟩ .

Now we want to turn this into a relativistic quantum field theory. For this we turn

S = T exp

(
−i

∫
dτHI(τ)

)
→ T exp

(
+i

∫
d4x Lint(x)

)
,

where Lint is the interaction part of the Lagrangian density.
Let us derive Feynman rules for a toy QFT

L =
1

2
(∂µϕ)

2 −
m2

ϕ

2
ϕ2 +

1

2
(∂µχ)

2 −
m2

χ

2
χ2 − gϕχ2 = L0 + Lint .

This theory has two particles ϕ and χ that can interact (later ϕ could be the photon and χ a
fermion). We assume that the coupling g is small.
The S matrix is now

S = T exp

(
−i

∫
d4x gϕχ2

)
. (2)

S is now an operator in the Fock space, just as ϕ and χ! To understand this, let us look at the
free theory.

1Different sources are not consistent with what is called a matrix element and what an amplitude. Often A is
called M
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The free theory

Let us begin with the free theory L0. The Euler-Lagrange equation for ϕ or χ is

∂µ
∂L0

∂(∂µϕ)
− ∂L0

∂ϕ
= 0 .

This gives us the Klein-Gordon equation

(∂2 +m2
ϕ)ϕ = 0 . (3)

Let us solve this equation

ϕ(x) =

∫
[dk]

(
a(k)e−ikx + a†(k)eikx

)
, (4)

χ(x) =

∫
[dk]

(
b(k)e−ikx + b†(k)eikx

)
, (5)

where [dk] is the Lorentz invariant phase space measure. The operators a(k) (a†(k)), when
acting on the vacuum |0⟩ destroy (generate) a particle with momentum k. This means that ϕ(x)
is also an operator.
The operators a and b have commutation relations like the harmonic oscillator

[a(k), a†(q)] = (2π)32ωqδ(q − k) ≡ δ(q − k) , (6)

[a(k), a(q)] = [a(k), b†(q)] = 0 . (7)

The δ function is normalised such that
∫
[dk]δ(q − k) = 1.

By defining the canonical momenta

π =
∂L
∂ϕ̇

= ϕ̇

We find equal time commutation relations

[ϕ(t,x), π(t,y)] = iδ(x− y) .

The objects |i⟩ and ⟨f | are now states in the Fock space. The state a†(k) |0⟩ is the state with
one ϕ particle with momentum k and mass mϕ. Right now, we do not have internal degrees of
freedom like spin.
The easiest thing to calculate is

G̃(x) = ⟨0|T{ϕ(x)ϕ(0)}|0⟩ .

This is the probability of a particle, being created at at x = 0 and destroyed at x. For simplicity
we will assume that x0 > 0

G̃(x) = ⟨0|ϕ(x)ϕ(0)|0⟩ =
∫

[dk][dq] ⟨0|
(
ake

−ikx +�
�a†ke

ikx
)(

��aq + a†q

)
|0⟩ .

Using

aka
†
q |0⟩ = [ak, a

†
q] |0⟩+ a†qak |0⟩ = δ(k − q) |0⟩ (8)
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we write

G̃(x) =

∫
[dk][dq]e−ikx

〈
0
∣∣∣aka†q∣∣∣0〉 =

∫
[dk]e−ikx

=

∫
[dk]

(
θ(x0)e

−ikx + θ(−x0)eikx
)
.

Let us Fourier transform this

G(p) =
i

p2 −m2 + i0+
. (9)

This is the Feynman propagator and also the Green’s function of the Klein-Gordon operator

(∂µ∂
µ +m2)G̃(x) = −iδ(x) . (10)

The interaction

Let us now use what we have learned to calculate ϕ→ χχ, i.e.

|i⟩ = a†(p1) |0⟩ and |f⟩ = b†(p2)b
†(p3) |0⟩ .

The S matrix element is now

⟨i|S|f⟩ =
�������〈
0
∣∣∣b2b3a†1∣∣∣0〉+ (−ig) ⟨0| b2b3

∫
d4x[dk4][dk5][dk6]

(
a4e

−ik4x +����a†4e
ik4x

)
(
����
b5e

−ik5x + b†5e
ik5x

)(
����
b6e

−ik6x + b†6e
ik6x

)
a†1 |0⟩ .

Using (8) we see why the b5 term vanishes∫
[dk5] b2b3e

..b5b
†
6 |0⟩ =

∫
[dk5] e

..δ(k5 − k6)b2b3 |0⟩ = 0 .

We now have and use (8) again and again

⟨i|S|f⟩ = (−ig)

∫
d4x[dk4][dk5][dk6]e

i(k5+k6−k4)x ⟨0| b2b3b†5b
†
6a4a

†
1 |0⟩

= (−ig)

∫
d4x[dk4][dk5][dk6]e

i(k5+k6−k4)xδ(p2 − k6)δ(p3 − k5)δ(k4 − p1) ⟨0|0⟩︸︷︷︸
1

= (−ig)

∫
d4x ei(p3+p2−p1)x = (2π)4δ(p2 + p3 − p1) (−ig) .

First note that we have momentum conservation, i.e. p1 = p2 + p3. The interesting bit is,
however, the (−ig)-part. This is a Feynman rule. This means that for all ϕχχ vertices we have
to write −ig. Note that this is also the coefficient of iLint, which is how Feynman rules are
sometimes derived.
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A more involved example: 2 → 2 scattering

Let us consider the scattering of χ(p1)χ
†(p2) → χ(p3)χ

†(p4). We have

|i⟩ = b†1d
†
2 |0⟩ and ⟨f | = ⟨0| b3d4 .

We want to calculate

T = (−ig2)
1

2!
⟨0| b3d4T

{∫
d4x1 ϕ(x1)︸ ︷︷ ︸

k5

χ(x1)︸ ︷︷ ︸
k6

χ†(x1)︸ ︷︷ ︸
k7

∫
d4x2 ϕ(x2)︸ ︷︷ ︸

k8

χ(x2)︸ ︷︷ ︸
k9

χ†(x2)︸ ︷︷ ︸
k0

}
b†1d

†
2 |0⟩ .

We now could substitute the expressions for ϕ and χ and commute all the expressions until we
arrive at a result. But we could also not do that and think about what δ functions we will get

T = (−ig2)
1

2!
⟨0| b3d4T

{∫
d4x1ϕ(x1)χ(x1)χ

†(x1)

∫
d4x2ϕ(x2)χ(x2)χ

†(x2)

}
b†1d

†
2 |0⟩

+ (−ig2)
1

2!
⟨0| b3d4T

{∫
d4x1ϕ(x1)χ(x1)χ

†(x1)

∫
d4x2ϕ(x2)χ(x2)χ

†(x2)

}
b†1d

†
2 |0⟩

+ (−ig2)
1

2!
⟨0| b3d4T

{∫
d4x1ϕ(x1)χ(x1)χ

†(x1)

∫
d4x2ϕ(x2)χ(x2)χ

†(x2)

}
b†1d

†
2 |0⟩

where for example χ(x2) · · · b†2 |0⟩ indicates that the contraction would give a δ(p1−k9). We now
have two terms corresponding to two Feynman diagrams. Let us build all possible contraction
involving external particles

T = (−ig2)
1

2!
⟨0| b3d4T

{∫
d4x1ϕ(x1)χ(x1)χ

†(x1)

∫
d4x2ϕ(x2)χ(x2)χ

†(x2)

}
b†1d

†
2 |0⟩

+ (−ig2)
1

2!
⟨0| b3d4T

{∫
d4x1ϕ(x1)χ(x1)χ

†(x1)

∫
d4x2ϕ(x2)χ(x2)χ

†(x2)

}
b†1d

†
2 |0⟩

+ (−ig2)
1

2!
⟨0| b3d4T

{∫
d4x1ϕ(x1)χ(x1)χ

†(x1)

∫
d4x2ϕ(x2)χ(x2)χ

†(x2)

}
b†1d

†
2 |0⟩

=

∫
d4x1d

4x2

 p1

p2

x2 x1

p3

p4

+

p1

p2

p3

p4

x1

x2

+

p1

p2

p3

p4
x1 x2

+ · · ·


All diagrams that are obtained from contracting external particles are disconnected and do not
contribute to T .

What about the internal contraction? Because ϕ and χ commute, we can consider

⟨0|T
{
· · ·ϕ(x1) · · ·ϕ(x2) · · ·

}
|0⟩ = ⟨0|T{ϕ(x1)ϕ(x2)} |0⟩ = G̃(x1 − x2)
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which is just the Feynman propagator. Let us combine what we know

T = (−ig2)
1

2!

∫
d4x1d

4x2e
i(p4+p3)x1e−i(p1+p2)x2 ⟨0|T{ϕ(x1)ϕ(x2)} |0⟩

+ (−ig2)
1

2!

∫
d4x1d

4x2e
−i(p1−p3)x1e−i(p2−p4) ⟨0|T{ϕ(x1)ϕ(x2)} |0⟩

= (−ig2)
1

2!
(2π)4δ(p1 + p2 − p3 − p4)

i

(p1 + p2)2 −m2 + i0+

+ (−ig2)
1

2!
(2π)4δ(p1 + p2 − p3 − p4)

i

(p1 − p3)2 −m2 + i0+
.

By swapping x1 ↔ x2 we get an additional factor 2.

T = (2π)4δ(p1 + p2 − p3 − p4)×
(
(−ig2)

i

(p1 + p2)2 −m2
+ (−ig2)

i

(p1 − p3)2 −m2

)
.

We can now formuate a general procedure for this theory

1. Draw all connected diagrams up to a certain power in g

2. Attach directed momenta to each line

3. For each ϕχχ vertex, attach −ig

4. Integrate over all unconstrained momenta

QED

We now have all the tools to see how QED works2. The Lagrangian is

L = −1

4
FµνFµν + ψ̄(i /D −m)ψ .

The objects here are as follows

� two (complex) spinor fields ψ and ψ̄ = ψ†γ0. These are four-component vectors containing
the spin up and down operators for particles and anti-particles.

� We denote /x = xµγ
µ. These γ matrices are 4×4 matrices that fulfill a Cliford algebra, i.e.

{γµ, γν} = γµγν + γνγµ = 2gµν (11)

� Fµν = ∂µAν − ∂νAµ the field strength tensor

� the 4-component vector fields Aµ of Maxwell

� the covariant derivative Dµ = ∂µ − ieAµ

Again, we have the free photon and electron fields

L0 = −1

4
FµνFµν + ψ̄(i/∂ −m)ψ and Lint = eψ̄ /Aψ .

2though like all QFT lecture, we will speed the discussion up a lot and will not derive the Feynman rules
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The Euler Lagrange equations for L0 are the (more or less) classical Maxwell equations for Aµ

(just keep in mind that Aµ is an operator) and the Dirac equation for ψ.
The Dirac equation (i/∂ −m)ψ = 0 has solutions

ψα =

∫
[dk]

2∑
s=1

(
b(s,k)uαe

−ikx + d†(s,k)vα(s,k)e
ikx

)
,

where u (v) describe particles (anti-particles). s indicated the dependence of the spin-state. It
is possible to write u and v down explictly using s as four-vectors. We will not be doing this
and only note that u and v fulfil the following equation of motion3

(/k −m)u(s,k) = (/k +m)v(s,k) = 0 .

The Green’s function give us the propagators

ν µ

q
=

−igµν
p2 + i0+

,

β α

p

=
[
(/p−m)−1

]
αβ

=
[/p+m]αβ

p2 −m2 + i0+
.

We can kind of just read of the eēγ vertex

β α

µ

= −ieγµβα .

Finally, we need the asymptotic states. For example an incoming (outgoing) e− is

ψb† |0⟩ → u and ⟨0| bψ̄† → ū .

Similarly we use v-type spinors for positrons.

Fermi’s golden rule

We now can calculate the amplitude A. However, we want something like a cross-section. For
that we note, that the probability this process is (up to normalisation)∣∣∣T 2

∣∣∣2 = ∣∣∣i(2π)4δ(Pf − Pi)A
∣∣∣2

Unfortunately, |δ|2 is meaningless. This is because our amplitude was written in term of plain
waves. One way to fix this is to construct wave-packets. We will instead put the system in a
box of size L→ ∞ and consider a time interval −T < t < T . The δ function now becomes

(2π)4δ(Pf − Pi) = I(Ef − Ei, T )I
3(P f − P i, L) .

The function I should, for T → ∞ approach the δ function. A sensible choice is

I(∆E, T ) =
2

∆E
sin

∆E T

2
,

3We will from now on drop the spin index dependence
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that features

I(∆E, T )2 = 2πTδ(∆E) .

We now have ∣∣∣(2π)4δ(Pf − Pi)
∣∣∣2 ≈ L3T (2π)4δ(Pf − Pi)

Because we normalised the fields with 2E particles per volume, we divide by 2EV =
∫
u†u per

particle. The transition rate, i.e. probability per unit time, is thus

1

T
|A|2V T (2π)4δ(Pf − Pi)

∏
i

1

2EiV

∏
f

1

2EfV

where the i (f) product runs over initial (final) particles.
Because the box is finite in size there are only

dn =
d3k

(2π)3
V →

∏
f

d3kfV

(2π)3

states between k and k+dk. This product now only runs over final states. The transition rate
into a particular part of phase space is now

dW = |A|2V
∏
in

1

2EiV
(2π)4δ(Pf − Pi)

∏
f

d3kf

(2π)32EfV︸ ︷︷ ︸
dΦ

dΦ is now called the Lorentz invariant phase space (which it is despite its looks).
For decay rates and cross section V will cancel. Consider a beam of one particle per V with

velocity v. It has a flux of N0 = v/V . Now let us generalise to two beams with v1 and v2.

The cross section is thus

dσ =
dW

N0
=

1

|v1 − v2|
1

4E1E2
|A|2dΦ .

Note the vectors vi are added like vectors and not like relativistic velocities, i.e. |v1 − v2| = 2
for massless particles. For 2 → 2 scattering one can easily show that

dσ

dt
=

1

64πs

1

|p1|2
|A|2 ,

with the Mandelstamm variable t and the centre-of-mass energy s. For massless particles, the t
integration goes from t = 0 to t = s with |p1| =

√
s/2.

Muon pair production e+e− → µ+µ−

We are now ready to calculate a matrix element. As an example we choose muon pair production
e+e− → µ+µ−. Muon electron scattering is then left as an exercise. Let us begin by writing
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down the matrix element using the Feynman rules

A =

e+(p1)

e−(p2)

q
µ−(p3)

µ+(p4)

µ ν = v̄(p1)(−ieγµ)u(p2)

(
−igµν
q2 + i0+

)
ū(p3)(−ieγν)v(p4) .

We now need |A|2 = AA∗. Because A is a complex number A∗ = A† so let us just calculate
that and see where it leads

A† =
(
v̄1(−ieγµ

′
)u2

)†
(

+igµ′ν′

q2 + i0+

)(
ū3(−ieγν

′
)v4

)†
.

For the spinor line we note that ū = u†γ0 and that, under adjungation the order of matrices
and vectors reverses (

v̄1γ
µ′
u2

)†
= u†2(γ

µ′
)†(γ0)†v1 .

Using (γµ)† = γ0γµγ0, (γ0)† = γ0 as well as γ20 = 1 we can re-write this as(
v̄1γ

µ′
u2

)†
= u†2γ

0γµ
′
γ0γ0v1 = ū2γ

µ′
v1

and similarly for the other line. We now have

|A|2 = (−ie)2(−i)(+ie)2(+i)
1

q4

(
v̄1γ

µu2 ū2γ
µ′
v1

)(
ū3γµv4 v̄4γµ′u3

)
.

=
e4

q4

(
(v̄1)αγ

µ
αβ(u2)β (ū2)δγ

µ′

δρ(v1)ρ

)(
(ū3)αγ

µ
αβ(v4)β (v̄4)δγ

µ′

δρ(u3)ρ

)
.

We now note that v and u form a completeness relation∑
s

usα(p)ū
s
β(p) = (/p+m)αβ and

∑
s

vsα(p)v̄
s
β(p) = (/p−m)αβ . (12)

This means we could simplify |A|2 by summing over final state spins and averaging over initial
states (assuming the experiment does not measure / prepare these quantities)

|A|2 = e4

q4

(
(v̄1)αγ

µ
αβ(/p2 +m)βδγ

µ′

δρ(v1)ρ

)(
(ū3)αγ

µ
αβ(/p4 −M)βδγ

µ′

δρ(u3)ρ

)
.

=
e4

q4

(
(/p1 −m)ραγ

µ
αβ(/p2 +m)βδγ

µ′

δρ

)(
(/p3 −M)ραγ

µ
αβ(/p4 −M)βδγ

µ′

δρ

)
.

This is now the definition of a trace in spinor space Aρρ = trA

|A|2 = e4

4q4
tr
(
(/p1 −m)γµ(/p2 +m)γµ

′
)
tr
(
(/p3 −M)γµ(/p4 +M)γµ′

)
.

These are now objects we can calculate easily. By using (11).

We need identities for traces of γ matrices.
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� trγν = 0: Use (11) with µ = ν, i.e. γµγµ = 4

tr(γν) =
1

4
tr(γνγµγµ)

∗
= − 1

tr
(γµγνγµ) = −1

4
tr(γνγµγµ) ,

where we used (11) again at ∗.

� traces of odd numbers of γ matrices vanish.

� tr(γµγν) = 4gµν . Using (11) and cyclicity

tr(γµγν) =
1

2

(
tr(γµγν) + tr(γνγµ)

)
=

1

2
tr{γµ, γν} = gµνtr1 = 4gµν

� tr
(
γµγνγργσ

)
= 4

(
gµνgρσ − gµρgνσ + gµσgνρ

)
similarly

For 0 ∼ m≪M we write

|A|2 = e4

4q4
tr
(
/p1γ

µ
/p2γ

µ′
)[

tr
(
/p3γµ/p4γµ′

)
+M������

tr
(
/p3γµγµ′

)
−M������

tr
(
γµ/p4γµ′

)
−M2tr

(
γµγµ′

)]
=

4e4

q4

(
pµ1p

µ′

2 − p1 · p2gµµ
′
+ pµ

′

1 p
µ
2

)[(
pµ3p

µ′

4 − p3 · p4gµµ
′
+ pµ

′

3 p
µ
4

)
−M2gµµ

′
]

=
8e4

q4

(
M2p1 · p2 + p1 · p4p2 · p3 + p1 · p3p2 · p4

)
.

Using the Mandelstam variables s, t and u as well as q = p1 + p2 we can write

p1 · p2 = s
2p1 · p3 = p2 · p4 = 1

2(M
2 − t)p1 · p4 = p2 · p3 = 1

2(M
2 − u)

we can now write down the matrix element in terms of experimentally accessible variables

|A|2 = 4e4

s2

(
1

2
(t2 − u2) +M2(s− t− u) +M4

)
→ 2e4(t2 + u2)

s2
.

The differential cross section in the high-energy limit is now with s+ t+ u = 0

dσ

dt
=

1

16πs2
|A|2 = 2πα2 s

2 + 2st+ 2t2

s4
σ =

∫ s

0
dt

dσ

dt
=

16πα2

3s
.
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