Feynman diagrams without QFT
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Reminder: Interaction picture

Let us split the Hamiltonian H = Hy + H' where Hj is solvable exactly, i.e. we can find Uj s.t.
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We now define U = UpU’
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defining the interaction picture Hr. We can solve (1) iteratively
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where T ensures the time-ordering, i.e.
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The S matrix in quantum field theory

The object we want to compute in QFT is the S matrix
S = Ur(oco, —00) = T exp (—i/dTH[(T)) =1+iT,

where H7 is hopefully small so that the series converges fast enough. Now, computing S in all
generality is obviously impossible. Let us instead look at the transition amplitude between some
initial state |¢) and some final state |f). This is

(fISi) = (fli) — (2m)*6(Py — P;) Ay,

A is now the invariant transition amplitude. Squaring it will give us a matrix element'.

The S matrix is unitary
1= 1Al 2 = (i[sT| £) r1sti) = (i|s"s]i) -
f !
If we split S =1+ 1T we can see
1=88t=1+iT —iTt + 771

T -7t =287 =i7T7".
If we calculate

2(£18T1i) = 3 (|7 |n) (T2
and set f =4, we find the total cross section ¢ — whatever

D nlTl) 1P = 2 (@ISTe) -

Now we want to turn this into a relativistic quantum field theory. For this we turn

S =T exp <—1/dTHI(T)> — Texp <+i/d4x ﬁim(x)> ,

where Li, is the interaction part of the Lagrangian density.
Let us derive Feynman rules for a toy QFT
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This theory has two particles ¢ and x that can interact (later ¢ could be the photon and y a
fermion). We assume that the coupling g is small.
The S matrix is now

S =T exp (—i / d*x g¢x2> . (2)

S is now an operator in the Fock space, just as ¢ and x! To understand this, let us look at the
free theory.

! Different sources are not consistent with what is called a matrix element and what an amplitude. Often A is
called M



The free theory
Let us begin with the free theory £y. The Euler-Lagrange equation for ¢ or x is

0L, 0L _,
"0(0u0) 99 '
This gives us the Klein-Gordon equation
(0*+m3)p=0. (3)

Let us solve this equation
o(x) = / [dk] (a(k)e*i’“ +aT(k)eikI) : (4)
(@) = / 4] (bk)e ™ + b ()el*) (5)

where [dk] is the Lorentz invariant phase space measure. The operators a(k) (af(k)), when
acting on the vacuum |0) destroy (generate) a particle with momentum k. This means that ¢(z)
is also an operator.

The operators a and b have commutation relations like the harmonic oscillator

[a(k), a'(q)) = (2m)*2w,d(q — k) = 6(q — k), (6)
[a(k), a(q)] = [a(k),b"(q)] = 0. (7)

The 6 function is normalised such that [[dk]é(¢ — k) = 1.

By defining the canonical momenta

oc

We find equal time commutation relations

[p(t, ), w(t, y)] = i0(x —y) .

The objects |i) and (f| are now states in the Fock space. The state af(k) |0) is the state with
one ¢ particle with momentum k and mass mg. Right now, we do not have internal degrees of
freedom like spin.

The easiest thing to calculate is

G(x) = (0|T{¢(x)$(0)}|0) .

This is the probability of a particle, being created at at x = 0 and destroyed at x. For simplicity
we will assume that x¢g > 0

Giw) = O16()o0)10) = [ [aklidal O] (are™ + 9fe") (ag+ a}) 0)
Using

agal 0) = [ar, al] [0) + alay. |0) = §(k — q) |0) (8)
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we write

G(z) = /[dk] [dgle~*® <O‘aka; 0> = /[dk]eikm
- /[dk] (e(l,o)e—ikx 4 9(_$0)eikzx> ‘

Let us Fourier transform this
i

Glp) = 5————.
Q p?2 —m?2 +i0"

(9)
This is the Feynman propagator and also the Green’s function of the Klein-Gordon operator
(8,0" +m*)G(z) = —id(x) . (10)

The interaction

Let us now use what we have learned to calculate ¢ — xx, i.e.

i) =a'(p1)[0)  and  [f) =0 (p2)bl (p3)]0) .

The S matrix element is now
(i1S1) = (0|pabsat (0] + (~ig) (0] bads / [k ko] (age 47 + o)
(Bse=57 + L5 ) (bge=4T + bl ) f J0) .

Using (8) we see why the b5 term vanishes

/[dk5] babze bsb, |0) = /[dk5] e 6(ks — kg)bzbs [0) = 0.

We now have and use (8) again and again
(il SIf) = (~ig) / d*a[dka) [dks) [dkgle! "> ke =R (0] bybsblblasal [0)

= (—ig) / d*a[dka][dks)[dkle™ 5 TFeTFT5 (py — ke )S(ps — ks)d(ka — p1) {0l0)
1

= (—ig) / Atz lPstP2=PI)T — (27)46(py + ps — p1) (—ig) .

First note that we have momentum conservation, i.e. p; = p2 + p3. The interesting bit is,
however, the (—ig)-part. This is a Feynman rule. This means that for all ¢xx vertices we have
to write —ig. Note that this is also the coefficient of 1Ly, which is how Feynman rules are
sometimes derived.



A more involved example: 2 — 2 scattering
Let us consider the scattering of x(p1)x'(p2) = x(p3)x'(ps). We have
i) =b{db10)  and  (f] =(0|bsd.
We want to calculate
T = (~ig?) = (0)bsdsT{ [ a* f d* f bid} [0
(=ig°) 5 (0l bads z1 ¢(x1) X(@1) X" (21) z2 P(x2) X(22) X' (22) pb1d5 |0)
5 6 i 8 9 0

We now could substitute the expressions for ¢ and y and commute all the expressions until we
arrive at a result. But we could also not do that and think about what § functions we will get

T — <—ng>% (0] bsd4T{ / d*z16(x1)x(21)x (21) / diwad(z2)x(w2)x  (x2) fbidé 10)

A
. 1 [ 1
+ (—192)5 <O| b3d4T{ /d IL‘1§Z5(:L’1) (ZL‘1 1‘1 / d iL‘ng) ZEQ 1‘2 1’2 }deT |0
A

1

+(~ig®)5; <O|b3d4T{/d P oy /dm e (@)}b%ﬂ 10)

ﬁ
where for example x(z2) - - - b; |0) indicates that the contraction would give a §(p; —kg). We now
have two terms corresponding to two Feynman diagrams. Let us build all possible contraction
involving external particles

i

T = (—ig? 0| b3d4T{ /d z1d(z1)x(z1)x  (z1 /d Tod(x2)x(z2) X (2) deT |0)
| ——y
% 4 e bt
+ (— 0| b3d4T d x10(21) ( X (1) | d*wep(z2)x(z2)X  (22) pb1d5|0)
7 1 %
= (— 0‘ b3d4T{ / d $1¢ 331 (.’L‘1 X 1‘1 /d4$2¢ xg 1’2 } d]L ‘0

P1 P3 p1 \il// P3 @
_ d4 d4 - R/ ! ST
= r1d To 2 1 + | =+ , R + .-
I PR S W
P2 Pa Py — o P4 wB = . =

All diagrams that are obtained from contracting external particles are disconnected and do not
contribute to T'.
What about the internal contraction? Because ¢ and x commute, we can consider

1

OIT{ -+ 6(ar) -+ plaa) - } 0) = (0] T{B(a1)(w2)}0) = Giar — z2)



which is just the Feynman propagator. Let us combine what we know

1 . .
T = (cig?)gy [ dmdlaad ez (0] T {1 )o(a2)] )

1 . .
+ (—192)2!/d4x1d4a:2e_‘(p1_p3)x1e_‘(m—m) (0] T{¢p(x1)(x2)} |0)
i
p1+p2)? —m2 +i0"
i
p1—p3)2 —m2 +i0T

= (—192)%(%)45(191 +p2 — p3 —p4)(

o 1
+ (—192)5(%)45(191 +p2 — p3 — pa) (
By swapping x1 > x2 we get an additional factor 2.

! + (—ig®) = )
(p1 + p2)? — m? (pr —p3)2—m2) "

T = (2m)*5(p1 + p2 — p3 — pa) X ((—192)

We can now formuate a general procedure for this theory
1. Draw all connected diagrams up to a certain power in g
2. Attach directed momenta to each line
3. For each ¢y vertex, attach —ig

4. Integrate over all unconstrained momenta

QED

We now have all the tools to see how QED works?. The Lagrangian is
1 =0
L= —ZF*“’FW + (D — m)p.

The objects here are as follows

e two (complex) spinor fields 1) and ¥ = 940, These are four-component vectors containing
the spin up and down operators for particles and anti-particles.

e We denote # = x,v". These v matrices are 4 x 4 matrices that fulfill a Cliford algebra, i.e.
{727 =AM A =29 (11)

e F,, =0,A, —0,A, the field strength tensor

e the 4-component vector fields A, of Maxwell

e the covariant derivative D, = 0, —ieA,

Again, we have the free photon and electron fields

Lo = _EFWFW + (i — m)y and Ling = e A .

2though like all QFT lecture, we will speed the discussion up a lot and will not derive the Feynman rules
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The Euler Lagrange equations for £y are the (more or less) classical Maxwell equations for A,
(just keep in mind that A, is an operator) and the Dirac equation for .
The Dirac equation (i@ — m)) = 0 has solutions

2
Yo = / k] Y (bs, Ryuae™ + d!(s, k)va(s, k)™ ) |

s=1

where u (v) describe particles (anti-particles). s indicated the dependence of the spin-state. It
is possible to write u and v down explictly using s as four-vectors. We will not be doing this
and only note that u and v fulfil the following equation of motion?

(k - m)u(s, k) = (k + m)v(s, k) =0.
The Green’s function give us the propagators

q

— _ —1Guv

v ;1_]?2-1—1()—~_7

=l =

6 [0

We can kind of just read of the eey vertex

L
§ = —ie’yga .

ﬂ «
Finally, we need the asymptotic states. For example an incoming (outgoing) e~ is
Yo |0) - u  and  (0|bT — .

Similarly we use v-type spinors for positrons.

Fermi’s golden rule

We now can calculate the amplitude A. However, we want something like a cross-section. For
that we note, that the probability this process is (up to normalisation)

‘72)2 - ‘1(27r)45(Pf _ A

Unfortunately, |§|? is meaningless. This is because our amplitude was written in term of plain
waves. One way to fix this is to construct wave-packets. We will instead put the system in a
box of size L — oo and consider a time interval —T < t < T. The ¢ function now becomes

(2m)*6(Ps — P) = I(E; — E;,T)I*(Py — P;,L).
The function I should, for T'— oo approach the § function. A sensible choice is

I(AE,T) = &sin AE;T,

3We will from now on drop the spin index dependence
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that features
I(AE,T)? = 2rT6(AE) .
We now have

(2m)*s(Ps — By)|” ~ LT (2n)'5(P; — P)

Because we normalised the fields with 2E particles per volume, we divide by 2EV = [ ulu per
particle. The transition rate, i.e. probability per unit time, is thus

1, A 1 1
~MPVTEr) o (Py PZ)]Z[ e ];[ 2B,V

where the i (f) product runs over initial (final) particles.
Because the box is finite in size there are only

d3 k:fV
d
n = 2 V H

states between k and k + dk. This product now only runs over final states. The transition rate
into a particular part of phase space is now

d3k
4 f
dW = |A]*V | | 2 (2m)*0(Pr — P) | | 2r2E,

~~

do

d® is now called the Lorentz invariant phase space (which it is despite its looks).
For decay rates and cross section V will cancel. Consider a beam of one particle per V' with
velocity v. It has a flux of Ny = v/V. Now let us generalise to two beams with v; and vs.

The cross section is thus

aw 1
do = Al“dd.
N(] ’Ul — ’Ug‘ 4E1E2 | |

Note the vectors v; are added like vectors and not like relativistic velocities, i.e. |v] — vao| = 2
for massless particles. For 2 — 2 scattering one can easily show that

do 1 1
dt  64rms |p|?

A2,

with the Mandelstamm variable ¢ and the centre-of-mass energy s. For massless particles, the ¢
integration goes from t = 0 to ¢t = s with |p,| = v/s/2.
Muon pair production ete™ — utu~

We are now ready to calculate a matrix element. As an example we choose muon pair production
ete™ — ptpu~. Muon electron scattering is then left as an exercise. Let us begin by writing



down the matrix element using the Feynman rules

et (p1) p(p3)

4= Pt = o) e utpe) () o) i o)
e (p2) ' (pa)

We now need |A|?> = AA*. Because A is a complex number A* = A so let us just calculate
that and see where it leads

Al = (51(—i€7ul)U2>T (M) (@3(—16’YVI)U4>T-

For the spinor line we note that @ = uf+? and that, under adjungation the order of matrices
and vectors reverses

)1 (") or .
Using (v#)T = 4%9#4%, (4°)T = 10 as well as 72 = 1 we can re-write this as

N
(@17“ U2> = uly*9*'7%4 %0 = " vy
and similarly for the other line. We now have

|A|? = (—ie)Q(—i)(—Fie)z(-i-i);(%’Y“uz ?127“/111) (ﬁg’mm 174’7#’7‘3) .
64 / /
= S ((e0aisu)s )ty (0)) (Es)anls00)s (a)s7fy (us)y )

We now note that v and u form a completeness relation
Zu =(p+m)asg  and Zv P)O5(pP) = (P — M)as - (12)

This means we could simplify |.A|? by summing over final state spins and averaging over initial
states (assuming the experiment does not measure / prepare these quantities)

et / /
|./4|2 = g ((771)&75/3(p2 + m)ﬁﬂgp(vl)p) ((a3)a’75,8(1¢4 - M)/Béfygbp(u‘g)P) )

64

= ()~ m)otis iy + m)assy) (B = Mperlis (py — M)ass,)

This is now the definition of a trace in spinor space A,, = trA

MF**M@ = m) gy + m)v ) (B = M), + M)y ) -

These are now objects we can calculate easily. By using (11).

We need identities for traces of v matrices.



try” = 0: Use (11) with p =v, i.e. Yy, =4

*

1 1 1
tr(v") = Ztr(’y”v“w) —a(v"v”m = —Ztr('y”v"'m),

where we used (11) again at *.

traces of odd numbers of v matrices vanish.

tr(y#y") = 4g"”. Using (11) and cyclicity

1 1
tr(y#y") = 3 (tr(’v“v”) + tr(v”v")) = §tr{v“,’y”} = g"trl = 49"

tr (’Y“V”’Y”’y”) = 4(9“”9”" — gtPgvo + g‘”g””) similarly

For 0 ~ m <« M we write

2 ! 2
A= grzn () o)+ M) — Moo )~ 2 ()
46 ’ ’ / / /
p (p1p2 — p1 - pag™ + pg) [(péfpfi — p3 - pag"" + ph pZ) —MQg”“}
86 2
7 (M p1 - P2 + D1 - pap2 - P3 + D1 - P3p2 - P4)

Using the Mandelstam variables s, ¢t and u as well as ¢ = p; + p2 we can write

2

P1-p2=45p1-P3=p2-pa=5(M> —t)p1-ps=pa-ps = 5(M> —u)

we can now write down the matrix element in terms of experimentally accessible variables

2et(t? + u?)

A2—464 1t2 %)+ M?(s —t M*
| ’—? St —ut) + M (s —t —u) + - 2

2

The differential cross section in the high-energy limit is now with s+t +u =10

do 9
dt ~ 16x 82 A" =

o2 s%+2st + 2t2 / a dﬁ 16ma?
st dt 3s
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